5 лучших практик для React разработчиков

2 года назад·6 мин. на чтение

В этой статье мы рассмотрим пять наиболее распространенных лучших практик для React разработчиков. React был разработан для того, чтобы его можно было настроить именно так, как вам нужно - он не имеет жестких ограничений. Поэтому, если эти пять сценариев лучших практик вам не подходят, вы можете найти свой собственный подход.

Существует множество способов структурировать код так, чтобы он был читабельным, и у каждого свой подход к этому. Возникает вопрос, есть ли лучший способ сделать это? Мы поговорим о лучших практиках:
  • Организация каталога
  • Компоненты и разделение ответственности
  • Работа с состояниями
  • Абстракция
  • Соглашения об именовании

1. Организация каталогов

В документации React упоминается, что в целом существует два основных способа организации вашего приложения React: Группировка по функциям или маршрутам и Группировка по типу файлов. Главное здесь - не перемудрить. Если вы начинаете с небольшого приложения, вы можете органично организовать свой код по ходу работы так, как вам удобно. Помните, что React не имеет собственной жесткой структуры, поэтому на 100% зависит от вас, как все будет структурировано. Если у вас есть логическое объяснение тому, как организованы файлы, то все хорошо. Однако, поскольку в документации React упоминаются эти две стратегии организации, давайте рассмотрим каждую из них, чтобы понять, как они структурированы. Допустим, у нас есть приложение для электронной коммерции, в котором есть пользователь, список товаров, подробная страница товара, корзина и процесс оформления заказа.

Группировка по функциям

Корневой каталог здесь - это каталог src, который является одним из двух базовых каталогов в вашем приложении React (второй - папка public). В каталоге src у нас будут основные файлы App.js и index.js в корне папки. Затем у нас будут вложенные каталоги для каждой из функций вашего приложения. Ваш подход к структуре может варьироваться в зависимости от того, как все организовано: в проекте может быть больше каталогов, меньше каталогов или даже более глубокая вложенность на компоненты, стилизацию и тестирование.
src/
  App.js
  App.css
  App.test.js
  index.js
  global/ <= общие для всего приложения сущности
    AppContext.js
    ThemeContext.js
    UserContext.js
    Button.js
  cards/
    index.js
    Cards.css
    Cards.js
    Card.css
    Card.js
    Card.test.js
  detailed-product/
    DetailedProduct.css
    DetailedProduct.js
    DetailedProduct.test.js
  checkout/
    ReviewOrder.css
    ReviewOrder.js
    ReviewOrder.test.js
    ShoppingCart.css
    ShoppingCart.js
    ShoppingCart.test.js
  user/
    index.js
    User.css
    User.js
    User.test.js

Группировка по типу файлов

Корневой каталог по-прежнему является каталогом src. Все, что будет отображаться на экране клиента, по-прежнему находится в этой папке. Как и раньше, мы будем хранить файлы App.js и index.js в корне этого каталога, а затем каталоги, представляющие составные части приложения: компоненты, контекст, CSS, хуки и тесты.
src/
  App.js
  index.js
  components/
    App.css
    Card.js
    Cards.js
    ConfirmationPage.js
    DetailedProduct.js
    Footer.js
    Navbar.js
    ReviewOrder.js
    Settings.js
    ShoppingCart.js
    User.js
  context/
    AppContext.js
    ThemeContext.js
    UserContext.js
  css/
    Card.css
    Cards.css
    ConfirmationPage.css
    DetailedProduct.css
    Footer.css
    Navbar.css
    ReviewOrder.css
    Settings.css
    ShoppingCart.css
    User.css
  hooks/
    useAuth.js
    useAxios.js
  tests/
    App.test.js
    Card.test.js
    Cards.test.js
    ConfirmationPage.test.js
    DetailedProduct.test.js
    Footer.test.js
    Navbar.test.js
    ReviewOrder.test.js
    Settings.test.js
    ShoppingCart.test.js
    User.test.js
Как и прежде, способ настройки проекта зависит от вашего приложения и от того, как вы хотите его реализовать. Основная структура здесь зависит от типа файла и не более того. В конечном итоге структура вашего файла должна быть сделана так, чтобы в ней было легко ориентироваться. Как вы это сделаете, зависит только от вас. О других вариантах структурирования React приложения читайте в:

2. Компоненты и разделение ответственности

До появления React Hooks было довольно легко определить, что считается компонентом класса с состоянием, а что - презентационным функциональным компонентом. Некоторые разработчики также называли их "умными" компонентами и "глупыми" компонентами. Разумеется, умные компоненты - это те, которые несут состояние и обрабатывают логику, а глупые компоненты - это те, которые просто принимают передаваемые им пропсы. После появления React Hooks и обновления Context API почти все можно считать функциональным компонентом, что приводит к разговору о том, когда следует разделять компоненты, содержащие локальное состояние, и компоненты, которые его не содержат, и как это делать. В конечном счете, это зависит от вас и/или вашей команды, как построить ваш паттерн проектирования, но лучшая практика показывает, что логика и компоненты с локальным состоянием должны быть отделены от статических компонентов. Подробнее о разделении ответственности читайте в статье Разделение ответственности в React. Как использовать контейнерные и презентационные компоненты..

3. Работа с состоянием и пропсами

Поток данных в React-приложении очень важен. Есть два способа работы с данными: использование состояния или передача состояния в виде пропсов. Давайте рассмотрим лучшие практики.

Состояние

При работе с состоянием, будь то глобально в контекстном API или локально, его нельзя изменять напрямую, переназначая свойство state с новым значением:
addOne = () => { // Так обновлять состояние нельзя
  this.state.counter += 1;
}
Вместо этого при работе с состоянием в классовых компонентах используйте метод this.setState() для обновления состояния.
import React from "react";
import "./styles.css";
class Counter extends React.Component{
 constructor(props) {
   super(props);
   this.state = {
     counter: 0
   }
 }
 addOne = () => {
   this.setState({counter: this.state.counter + 1})
 }
 subtractOne = () => {
   this.setState({counter: this.state.counter - 1});
 }
 reset = () => {
   this.setState({ counter: 0 });
 }
 render() {
   return (
     <div className="App">
       <h1>Simple React Counter</h1>
       <h2>{this.state.counter}</h2>
       <button onClick={this.addOne}> + </button>
       <button onClick={this.reset}> Reset </button>
       <button onClick={this.subtractOne}> - </button>
     </div>
   );
 }
}
export default Counter;
При использовании React Hooks вы будете использовать любое название своего set метода:
import React, { useState } from "react";
import "./styles.css";
export default function App() {
 const [ counter, setCounter ] = useState(0);
 const addOne = () => {
   setCounter(counter + 1)
 }
 const subtractOne = () => {
   setCounter(counter - 1);
 }
 const reset = () => {
   setCounter(0);
 }
   return (
     <div className="App">
       <h1>Simple React Counter</h1>
       <h2>{counter}</h2>
       <button onClick={subtractOne}> - </button>
       <button onClick={reset}> Reset </button>
       <button onClick={addOne}> + </button>
     </div>
   );
}

Пропсы

При работе с пропсами и передаче состояния другим компонентам для использования, может наступить момент, когда вам потребуется передать пропсы пяти дочерним компонентам. Такой метод передачи пропсов от родителя к ребенку на протяжении нескольких поколений называется prop drilling, и его следует избегать. Хотя код, безусловно, будет работать, если вы будете передавать проп на много уровней вниз, он подвержен ошибкам, и поток данных может быть трудно отслеживать. Вам следует создать какой-либо паттерн проектирования для глобального управления состоянием с помощью Redux или Context API (Context API в настоящее время является более простым и предпочтительным способом). Подробнее о вариантах передачи данных между реакт компонентами читайте в статье Как передавать данные между компонентами в ReactJS

4. Абстракция

React процветает благодаря возможности повторного использования. Когда мы говорим о лучших практиках React, часто встречается термин абстракция. Абстракция означает, что есть части большого компонента или приложения, которые могут быть изъяты, превращены в собственный функциональный компонент, а затем импортированы в более крупный компонент. Если сделать компонент как можно проще, часто так, чтобы он служил только одной цели, это увеличивает шансы на многократное использование кода. В простом приложении счетчика, созданном выше, есть возможность абстрагировать некоторые элементы от компонента App. Кнопки могут быть абстрагированы в собственный компонент, где мы передаем метод и метку кнопки в качестве пропсов. Заголовок и название приложения также могут быть размещены в собственных компонентах. После того как мы абстрагировали все элементы, компонент App может выглядеть примерно так:
import React, { useState } from "react";
import { Button } from "./Button";
import { Display } from "./Display";
import { Header } from "./Header";
import "./styles.css";

export default function App() {
  const addOne = () => {
   setCounter(counter + 1)
 }
 const subtractOne = () => {
   setCounter(counter - 1);
 }
 const reset = () => {
   setCounter(0);
 }
 const initialState = [
   {operation: subtractOne, buttonLabel:"-"},
   {operation: reset, buttonLabel: "reset"},
   {operation: addOne, buttonLabel: "+"}
 ]
 const [ counter, setCounter ] = useState(0);
 const [ buttonContents,  ] = useState(initialState)
    return (
     <div className="App">
       <Header header="Simple React Counter"/>
       <Display counter={counter}/>
       {buttonContents.map(button => {
         return (
           <Button key={button.operation + button.buttonLabel} operation={button.operation} buttonLabel={button.buttonLabel} />
         )
       })}
     </div>
   );
}
Основная цель абстракции - сделать дочерние компоненты как можно более общими, чтобы их можно было использовать повторно в любом нужном вам виде. App-компонент должен содержать только ту информацию, которая специфична для приложения, и выводить или возвращать только более мелкие компоненты.

5. Соглашения об именовании

В React есть три основных соглашения об именовании, которые следует рассматривать как лучшие практики.
  1. Компоненты должны быть написаны в PascalCase - а также и названы по их основной функциональности, а не по специфике приложения (на случай, если вы измените ее позже).
  2. Элементы, которым нужны ключи, должны быть уникальными, неслучайными идентификаторами (например, отдельные карты или записи в карточной колоде или списке). Лучшая практика - не использовать для ключей только индексы. Допустимо назначение ключа, состоящего из конкатенации двух различных свойств объекта.
Основная цель ключа - хранить базовую информацию, чтобы React мог получить представление о том, что изменилось в приложении.
key={button.operation + button.buttonLabel}
  1. Методы должны быть в camelCase и называться по их назначению, а не быть специфичными для приложения. По тем же причинам, что и компоненты в PascalCase, методы должны быть названы по их назначению, а не по их особенности в приложении.

Итоги

В этой статье мы рассмотрели пять лучших практик, которые следует применять при разработке на React. Во многих случаях речь идет о том, что подходит вам и вашей команде, а не о том, что конкретно считается "лучшей практикой". Именно разработчики, которые впоследствии будут редактировать и читать ваш код, должны будут уметь расшифровывать и улучшать ваш проект.

Чистая архитектура в Node.js

2 года назад·10 мин. на чтение

Чистая архитектура (Clean Architecture) — это концепция разработки программного обеспечения, которая фокусируется на создании модульного и поддерживаемого кода. Архитектура позволяет разработчику создавать кодовую базу, которую легко понять, протестировать и расширить.

Основное внимание в чистой архитектуре уделяется отделению основной бизнес-логики приложения от деталей инфраструктуры. В этой статье мы обсудим чистую архитектуру в Node.js и рассмотрим, как реализовать ее в проектах Node.js примерами кода и как применять к ним концепции.

Выявление и решение проблем

При разработке приложений Node.js мы часто сталкиваемся с некоторыми проблемами, такими как дублирование кода, неорганизованная кодовая база и тесная связь (tight coupling). В следующем разделе мы используем простой пример приложения Node.js, которое извлекает данные из базы данных и возвращает их в качестве ответа JSON. Чистая архитектура предлагает решения этих проблем, делая упор на следующие принципы:

Разделение ответственности (Separation of Concerns, SoC)

Фундаментальный принцип разработки программного обеспечения, который подчеркивает важность разделения системы на отдельные модули или компоненты, каждый из которых несет определенную и независимую ответственность. В Node.js SoC часто реализуется с использованием модульной архитектуры, где каждый модуль отвечает за одну задачу или функциональность. Вот пример того, как разделение ответственности может быть применено к этому коду:
// index.js - Плохой код!

const express = require('express')
const app = express()
const database = require('./database')

app.get('/users', async (req, res) => {
  try {
    const users = await database.getUsers()
    res.json(users)
  } catch (error) {
    res.status(500).send('Internal Server Error')
  }
})

app.listen(3000, () => {
  console.log('Server is listening on port 3000')
})
В этом коде мы смешали задачи маршрутизации, извлечения данных и обработки ошибок в одном файле. Это может затруднить обслуживание и масштабирование кода по мере роста приложения.
Вот как мы можем применить разделение ответственности к этому коду:
// index.js

const express = require('express')
const app = express()
const usersRouter = require('./routes/users')

app.use('/users', usersRouter)

app.listen(3000, () => {
  console.log('Server is listening on port 3000')
})
// routes/users.js

const express = require('express')
const router = express.Router()
const usersController = require('../controllers/users')

router.get('/', usersController.getUsers)

module.exports = router
// controllers/users.js

const database = require('../database')

async function getUsers(req, res) {
  try {
    const users = await database.getUsers()
    res.json(users)
  } catch (error) {
    res.status(500).send('Internal Server Error')
  }
}

module.exports = {
  getUsers,
}
В этом переработанном коде мы разделили задачи маршрутизации, контроллера и извлечения данных на три отдельных файла. Файл index.js отвечает за создание приложения Express и регистрацию маршрутов, файл routes/users.js отвечает за обработку маршрута /users и делегирование запроса usersController, а файл controllers/users.js отвечает за извлечение данных из базы данных и возврат ответа клиенту. Разделив эти задачи, мы можем достичь лучшей модульности и удобства сопровождения кода. Например, если мы хотим добавить больше маршрутов, мы можем создать новый файл в routes и зарегистрировать его в index.js без изменения существующего кода. Аналогичным образом, если мы хотим изменить способ извлечения данных из базы данных, мы можем изменить database.js файл без изменения маршрута или кода контроллера.

Инверсия зависимостей (Dependency Inversion, DI)

В Clean Architecture зависимости инвертируются, что означает, что модули более высокого уровня должны зависеть от модулей более низкого уровня. Это гарантирует, что бизнес-логика не будет связана с деталями инфраструктуры. Вот пример того, как инверсия зависимостей может быть применена к этому коду:
// index.js - Плохой код!

const express = require('express')
const app = express()

const usersController = require('./controllers/users')
app.get('/users', async (req, res) => {
  try {
    const users = await usersController.getUsers()
    res.json(users)
  } catch (error) {
    res.status(500).send('Internal Server Error')
  }
})

app.listen(3000, () => {
  console.log('Server is listening on port 3000')
})
// controllers/users.js

const database = require('../database')
async function getUsers() {
  try {
    const users = await database.getUsers()
    return users
  } catch (error) {
    throw new Error('Error retrieving users')
  }
}

module.exports = {
  getUsers,
}
В этом коде index.js напрямую зависит от модуля usersController, который в свою очередь напрямую зависит от модуля database. Это нарушает принцип инверсии зависимостей, поскольку высокоуровневые модули не должны зависеть от низкоуровневых модулей.
Вот как мы можем применить инверсию зависимостей к этому коду:
// index.js

const express = require('express')
const app = express()
const usersController = require('./controllers/users')
const database = require('./database')

app.get('/users', async (req, res) => {
  try {
    const users = await usersController.getUsers(database)
    res.json(users)
  } catch (error) {
    res.status(500).send('Internal Server Error')
  }
})

app.listen(3000, () => {
  console.log('Server is listening on port 3000')
})
// controllers/users.js

async function getUsers(database) {
  try {
    const users = await database.getUsers()
    return users
  } catch (error) {
    throw new Error('Error retrieving users')
  }
}

module.exports = {
  getUsers,
}
В этом переработанном коде мы применили Dependency Inversion, передав модуль database в качестве параметра функции getUsers в модуле usersController. Таким образом, высокоуровневый модуль index.js не зависит напрямую от низкоуровневого модуля database, но оба зависят от абстракции функции getUsers. Применяя инверсию зависимостей, мы можем добиться большей модульности, гибкости и тестируемости кода. Например, если мы хотим переключиться на другую реализацию базы данных, мы можем создать новый модуль, реализующий функцию getUsers, и передать ее в качестве getUsers в модуле usersController без изменения существующего кода. Точно так же мы можем легко имитировать модуль database для целей модульного тестирования.

Принцип единой ответственности (Single Responsibility Principle, SRP)

Каждый модуль или функция должны нести единую ответственность. Это помогает в создании кодовой базы, которую легко понять и поддерживать. Вот пример в Node.js который иллюстрирует принцип SRP:
// user.js - Плохой код!

class User {
  constructor(name, email, password) {
    this.name = name;
    this.email = email;
    this.password = password;
  }

  saveToDatabase() {
    await database.saveUser(user)
    .then(() => {
      res.status(200).send()
    })
    .catch(err => {
      res.status(400).send('Email Error')
    });
  }

  sendWelcomeEmail() {
    await mailService.send(user, 'Welcome')
    .then(() => {
      res.status(200).send()
    })
    .catch(err => {
        res.status(400).send('Email Error')
    });
  }
}
В этом примере у нас есть класс User, который имеет две обязанности:
  1. Сохранение пользовательских данных в базе данных
  2. Отправка приветственного электронного письма пользователю
Это нарушает принцип SRP, поскольку класс User имеет несколько причин для изменения. Например, если мы решим изменить способ сохранения пользовательских данных в базе данных, нам также придется изменить класс User, даже если это не связано с отправкой приветственного электронного письма.
Чтобы следовать принципу SRP, мы можем разделить эти обязанности на отдельные классы:
class User {
  constructor(name, email, password) {
    this.name = name;
    this.email = email;
    this.password = password;
  }
}

class UserRepository {
  saveToDatabase(user) {
    await database.saveUser(user)
    .then(() => {
      res.status(200).send()
    })
    .catch(err => {
      res.status(400).send('Email Error')
    });
  }
}

class EmailService {
  sendWelcomeEmail(user) {
      await mailService.send(user, 'Welcome')
      .then(() => {
        res.status(200).send()
      })
      .catch(err => {
        res.status(400).send('Email Error')
      });
    }
  }
}
Теперь у нас есть три класса, каждый из которых несет единую ответственность:
  1. User: отвечает за представление пользователя.
  2. UserRepository: отвечает за сохранение пользовательских данных в базе данных.
  3. EmailService: отвечает за отправку приветственного электронного письма пользователю.
Разделив обязанности, мы сделали наш код более модульным и простым в обслуживании. Если нам нужно изменить способ сохранения пользовательских данных в базе данных, нам нужно только изменить класс UserRepository. Класс User и класс EmailService остаются неизменными.

Концепции и детальное проектирование

Чистая архитектура в Node.js основана на принципах чистой архитектуры, введенных Робертом С. Мартином (он же дядя Боб). В нем подчеркивается разделение ответственности, разъединение зависимостей и модульность. Цель состоит в том, чтобы создать кодовую базу, которую легко понять, протестировать и поддерживать. Основная идея Clean Architecture заключается в разделении приложения на разные слои, где каждый уровень несет определенную ответственность. Слои взаимодействуют друг с другом через четко определенные интерфейсы. Это позволяет легко модифицировать и тестировать приложение, не затрагивая другие части кодовой базы. Node.js — это популярная среда выполнения для создания веб-приложений. Он имеет обширную экосистему библиотек и фреймворков, которые можно использовать для реализации Clean Architecture. Вот некоторые из ключевых концепций чистой архитектуры в Node.js:

Уровень инфраструктуры (Infrastructure Layer)

Уровень инфраструктуры отвечает за обработку внешних зависимостей, таких как базы данных, API или файловая система. Он должен быть отделен от уровня домена, чтобы обеспечить легкое тестирование и модификацию. Уровень инфраструктуры должен реализовывать интерфейсы, определенные уровнем домена. В Node.js уровень инфраструктуры может быть реализован с помощью пакетов или модулей. Например, можно использовать популярный пакет Knex.js для обработки запросов к базе данных. Уровень инфраструктуры должен быть спроектирован так, чтобы быть подключаемым, что позволяет легко заменять внешние зависимости. Вот пример модуля инфраструктуры, реализующего адаптер базы данных:
const knex = require('knex');

class UserDatabase {
  constructor(config) {
    this.db = knex(config);
  }
  
  async getById(id) {
    const data = await this.db('users').where({ id }).first();
    return data ? User.create(data) : null;
  }
  
  async save(user) {
    const data = User.toData(user);
    const { id } = user;
    
    if (id) {
      await this.db('users').where({ id }).update(data);
    } else {
      const [newId] = await this.db('users').insert(data);
      user.id = newId;
    }
  }
}
Этот модуль предоставляет методы для получения пользователя по идентификатору и сохранения пользователя в базе данных с помощью библиотеки Knex.js.

Уровень представления (Presentation Layer)

Уровень представления отвечает за отображение выходных данных приложения для пользователя и обработку вводимых пользователем данных. Он должен быть отделен от прикладного уровня и уровня инфраструктуры. Уровень представления может быть реализован с помощью веб-фреймворков, таких как Express.js или Hapi.js. В Node.js уровень представления может быть реализован с помощью веб-фреймворков или модулей. Веб-фреймворки предоставляют мощный и гибкий способ реализации уровня представления и размещения всей логики вместе. Вот пример модуля презентации, реализующего REST API с помощью веб-платформы Express.js:
const express = require('express');
const bodyParser = require('body-parser');
const UserService = require('./services/user-service');
const UserDatabase = require('./infra/user-database');

const app = express();

app.use(bodyParser.json());

const userDatabase = new UserDatabase(config);
const userService = new UserService(userDatabase);

app.get('/users/:id', async (req, res) => {
  const { id } = req.params;
  try {
    const user = await userService.getUserById(id);
    res.json(user);
  } catch (error) {
    res.status(404).json({ error: error.message });
  }
});

app.put('/users/:id', async (req, res) => {
  const { id } = req.params;
  const { userData } = req.body;
  try {
    let user = await userService.getUserById(id);
    user = User.create({ ...user, ...userData });
    await userService.saveUser(user);
    res.json(user);
  } catch (error) {
    res.status(404).json({ error: error.message });
  }
});
Этот модуль создает приложение Express.js, настраивает пользовательскую службу и базу данных, а также предоставляет конечные точки REST API для получения и обновления пользовательских данных.

Прикладной уровень (Application Layer)

Прикладной уровень отвечает за оркестрацию взаимодействия между доменным уровнем и уровнем инфраструктуры. Он содержит варианты использования приложения, которые представляют взаимодействия между пользователем и системой. Прикладной уровень должен быть отделен от уровня домена и уровня инфраструктуры. В Node.js прикладной уровень может быть реализован с помощью классов или модулей. Классы обеспечивают четкое разделение ответственности и инкапсуляцию. Модули обеспечивают более простой подход к реализации прикладного уровня. Вот пример класса приложения, представляющего пользовательскую службу:
class UserService {
  constructor(userDatabase) {
    this.userDatabase = userDatabase;
  }
  
  async getUserById(id) {
    const user = await this.userDatabase.getById(id);
    if (!user) {
      throw new Error(`User not found with ID ${id}`);
    }
    return user;
  }
  
  async saveUser(user) {
    await this.userDatabase.save(user);
  }
}
Этот класс предоставляет методы для получения пользователя по идентификатору и сохранения пользователя с помощью модуля инфраструктуры UserDatabase.

Уровень домена (Domain (Enterprise) Layer)

Доменный уровень является сердцем приложения, содержащим бизнес-логику и правила. Он должен быть независим от каких-либо внешних библиотек или фреймворков, что упрощает его тестирование и изменение. Доменный уровень является наиболее важной частью приложения, и любые изменения должны вноситься с большой осторожностью. В Node.js, уровень домена может быть реализован с помощью классов или модулей. Классы обеспечивают четкое разделение ответственности, инкапсуляцию и возможность повторного использования. Модули, с другой стороны, обеспечивают более простой подход к реализации доменного уровня. Вот пример класса домена, представляющего сущность пользователя:
class User {
  constructor(id, name, email) {
    this.id = id;
    this.name = name;
    this.email = email;
  }
  
  changeName(name) {
    this.name = name;
  }
  
  changeEmail(email) {
    this.email = email;
  }
  
  static create(data) {
    const { id, name, email } = data;
    return new User(id, name, email);
  }
  
  static toData(user) {
    const { id, name, email } = user;
    return { id, name, email };
  }
}
Этот класс инкапсулирует пользовательские данные и предоставляет методы для изменения имени и адреса электронной почты пользователя.

Использование сторонних npm пакетов

Использование сторонних пакетов — отличный способ повысить чистоту кода. Существует множество пакетов, которые могут помочь вам организовать кодовую базу и сделать ее более модульной. Например, можно использовать пакет, например Express.js для обработки маршрутизации и промежуточного ПО. Вы также можете использовать пакет, такой как Knex.js для обработки запросов к базе данных. Использование этих пакетов может помочь уменьшить дублирование кода и сделать базу кода более организованной. Вот еще несколько примеров использования сторонних пакетов:

Lodash

Lodash — это служебная библиотека, предоставляющая широкий спектр функций для работы с массивами, объектами и другими структурами данных. Используя Lodash, можно избежать написания повторяющегося кода для таких задач, как фильтрация, сортировка и преобразование данных. Например, рассмотрим следующий код для фильтрации массива пользователей по возрасту:
const users = [
  { name: 'Alice', age: 25 },
  { name: 'Bob', age: 30 },
  { name: 'Charlie', age: 35 },
];

const filteredUsers = users.filter(user => user.age >= 30);
Используя Lodash, вы можете вместо этого написать следующий код:
const _ = require('lodash');

const users = [
  { name: 'Alice', age: 25 },
  { name: 'Bob', age: 30 },
  { name: 'Charlie', age: 35 },
];

const filteredUsers = _.filter(users, user => user.age >= 30);
Этот код более лаконичный и легкий для чтения, а использование функции filter от Lodash дает понять, что делает код.

Moment.js или date-fns

Moment.js — это библиотека для синтаксического анализа, манипулирования и форматирования даты и времени. Используя Moment.js, можно избежать написания сложного кода манипуляции с датой и снизить вероятность ошибок. Например, рассмотрим следующий код для форматирования даты в виде строки:
const date = new Date();
const formattedDate = `${date.getFullYear()}-${date.getMonth() + 1}-${date.getDate()}`;
Используя Moment.js, вы можете вместо этого написать следующий код:
const moment = require('moment');
const date = new Date();
const formattedDate = moment(date).format('YYYY-MM-DD');
Этот код легче читать и поддерживать, а использование функции format от Moment.js дает понять, что делает код.

Winston

Winston — это библиотека логирования (журналирования), которая предоставляет множество функций для ведения журнала сообщений, включая различные уровни логов и настраиваемое форматирование. Используя Winston, вы можете избежать написания пользовательского кода ведения журнала и убедиться, что ваши журналы согласованы и легко читаются. Например, рассмотрим следующий код для регистрации сообщения:
console.log(`[${new Date().toISOString()}] INFO: User logged in`);
Используя Winston, вы можете вместо этого написать следующий код
const winston = require('winston');

const logger = winston.createLogger({
  level: 'info',
  format: winston.format.combine(
    winston.format.timestamp(),
    winston.format.printf(info => `[${info.timestamp}] ${info.level}: ${info.message}`)
  ),
  transports: [
    new winston.transports.Console(),
    new winston.transports.File({ filename: 'app.log' }),
  ],
});
logger.info('User logged in');
Этот код более настраиваемый и легко читаемый, а использование Winston дает понять, что делает код.

Итоги

Чистая архитектура — это мощная концепция, которая может помочь вам создать модульный и поддерживаемый код в проектах Node.js. Следуя принципам чистой архитектуры, можно создать кодовую базу, которую легко понять, протестировать и расширить. Можно также использовать сторонние пакеты и различные структуры папок для повышения чистоты кода. Реализация Clean Architecture в проектах Node.js может помочь вам избежать распространенных ошибок, таких как дублирование кода, неорганизованная кодовая база и тесная связь.