Методы оптимизации JavaScript для более быстрой загрузки веб-сайта. Подробное руководство

год назад·11 мин. на чтение

Освойте оптимизацию JavaScript для повышения производительности веб-сайта: минимизируйте размеры файлов, уменьшите количество запросов, используйте кэширование и асинхронную загрузку, а также используйте лучшие практики для более быстрой загрузки и улучшения UX.

В современном быстро меняющемся цифровом мире производительность веб-сайта играет решающую роль в определении успеха любого онлайн-бизнеса. Быстрый, отзывчивый и удобный веб-сайт не только привлекает и удерживает посетителей, но и способствует повышению рейтинга в поисковых системах, повышению коэффициента конверсии и улучшению пользовательского опыта (UX). Как инженер-программист или веб-разработчик, важно расставить приоритеты в методах оптимизации производительности в своих проектах. В этой статье рассмотрим различные методы оптимизации кода JavaScript, включая минимизацию размеров файлов, сокращение сетевых запросов, использование кэширования и асинхронной загрузки, а также использование лучших практик для обеспечения более быстрой загрузки и улучшения UX.

Минимизация размеров файлов

Одним из важнейших факторов, влияющих на время загрузки веб-сайта, является размер файлов, предоставляемых пользователю. Загрузка больших файлов занимает больше времени и может привести к медленной загрузке вашего веб-сайта, что приведет к неоптимальному взаимодействию с пользователем. Файлы JavaScript не являются исключением, и оптимизация их размеров является фундаментальным шагом в повышении производительности вашего сайта. Минификация — это процесс удаления ненужных символов (таких как пробелы, комментарии и разрывы строк) и сокращения имен переменных в коде JavaScript без ущерба для его функциональности. Это приводит к значительно меньшему размеру файла, что, в свою очередь, приводит к более быстрой загрузке и повышению производительности.

Пример кода JavaScript: до и после минификации

Давайте посмотрим на простой пример, чтобы понять влияние минификации на размер файла: Перед минификацией:
// Функция вычисления суммы двух чисел
function addNumbers(num1, num2) {
    return num1 + num2;
}

// Вызов функции для вычисления суммы 3 и 5
const sum = addNumbers(3, 5);

// Вывод результата в консоль
console.log("The sum is:", sum);
После минификации:
function addNumbers(n,e){return n+e}const sum=addNumbers(3,5);console.log("The sum is:",sum);
Как вы можете видеть, уменьшенная версия кода значительно меньше, с удаленными ненужными символами и сокращенными именами переменных. Это приводит к меньшему размеру файла и более быстрой загрузке, не влияя на функциональность кода.

Сжатие файлов

Сжатие — это еще один метод, используемый для уменьшения размера файлов, что приводит к сокращению времени загрузки веб-сайта. Он работает, применяя алгоритмы для сжатия данных в файлах, делая их меньше без потери их функциональности. Когда браузер запрашивает сжатый файл, он распаковывается на лету, что позволяет правильно отображать и выполнять содержимое. Существует два широко используемых алгоритма сжатия файлов JavaScript: Gzip и Brotli. Gzip долгое время был стандартом де-факто, но Brotli, новый алгоритм сжатия, разработанный Google, становится все более популярным благодаря превосходной степени сжатия и скорости.

Методы сжатия Gzip и Brotli

Gzip: Gzip — это широко распространенный алгоритм сжатия, который может значительно уменьшить размер файлов JavaScript. Gzip использует алгоритм Deflate, который сочетает в себе кодирование LZ77 и Huffman для эффективного сжатия данных. Brotli: Brotli — это более новый алгоритм сжатия, разработанный Google, обеспечивающий лучшую степень сжатия, чем Gzip. Brotli использует комбинацию LZ77, кодирования Хаффмана и новой техники моделирования контекста для достижения более высоких степеней сжатия. В большинстве случаев Brotli превосходит Gzip как по степени сжатия, так и по скорости, что делает его привлекательным вариантом для современных веб-приложений.

Конфигурация на стороне сервера для сжатия

Для обслуживания сжатых файлов JavaScript необходимо настроить сервер на сжатие файлов с помощью Gzip или Brotli перед их отправкой клиенту. Конкретные шаги настройки различаются в зависимости от типа вашего сервера (например, Apache, Nginx или Node.js). Вот краткий обзор того, как включить сжатие на популярных типах серверов:
  • Apache: Включите модуль mod_deflate для сжатия Gzip или mod_brotli для сжатия Brotli и настройте соответствующие параметры в файле .htaccess или конфигурации виртуального хоста.
  • Nginx: Используйте директивы gzip или brotli в конфигурационном файле Nginx, чтобы включить сжатие и указать настройки.
  • Node.js: Для серверов на базе Node.js вы можете использовать промежуточное программное обеспечение (middleware), такое как compression для Gzip или shrink-ray-current для Brotli в сочетании с Express или аналогичным веб-фреймворком.
Важно отметить, что некоторые браузеры могут не поддерживать сжатие Brotli, поэтому рекомендуется настроить сервер так, чтобы он возвращался к Gzip, когда Brotli не поддерживается. Это обеспечивает оптимальную совместимость и производительность во всех браузерах.

Бандлинг для сокращения сетевых запросов

Сокращение количества сетевых запросов имеет решающее значение для повышения производительности веб-сайта, поскольку каждый запрос увеличивает задержку и потребляет пропускную способность.

Что такое бандлинг?

Бандлинг — это процесс объединения нескольких файлов JavaScript в один файл. Это уменьшает количество HTTP-запросов, которые необходимо сделать браузеру, тем самым ускоряя процесс загрузки. Объединение может значительно повысить производительность веб-сайта, особенно для веб-сайтов с большим количеством файлов JavaScript меньшего размера.

Инструменты для бандлинга

Существует несколько популярных инструментов для объединения файлов JavaScript, каждый из которых имеет свои уникальные функции и преимущества. Вот несколько широко используемых инструментов для комплектации:
  • Webpack: Webpack — это мощный и гибкий сборщик модулей, который не только объединяет файлы JavaScript, но и обрабатывает другие ресурсы, такие как css и изображения. Он имеет надежную экосистему плагинов, позволяющую расширять его функциональность по мере необходимости.
  • Rollup: Rollup — еще один популярный сборщик модулей JavaScript, ориентированный на простоту и производительность. Он особенно хорошо подходит для объединения библиотек и может выводить несколько форматов, включая модули CommonJS, AMD и ES.

Пример кода JavaScript: объединение нескольких файлов

Чтобы продемонстрировать процесс объединения, предположим, что у вас есть три отдельных файла JavaScript:
// main.js
import { greet } from './greeting.js';
import { calculate } from './math.js';

console.log(greet('John'));
console.log(calculate(5, 3));
// greeting.js
export function greet(name) {
  return `Hello, ${name}!`;
}
// math.js
export function calculate(x, y) {
  return x * y;
}
Используя инструмент бандлинга, такой как Webpack или Rollup, вы можете объединить эти файлы в один связанный файл. Выходные данные могут выглядеть примерно так:
(function () {
  'use strict';

  function greet(name) {
    return `Hello, ${name}!`;
  }

  function calculate(x, y) {
    return x * y;
  }

  console.log(greet('John'));
  console.log(calculate(5, 3));
})();
Как видите, результирующий файл содержит весь необходимый код из исходных файлов в одном автономном блоке, что сокращает количество сетевых запросов, необходимых для загрузки скриптов. Минимизируя количество запросов, вы можете сократить время, необходимое браузеру для загрузки и обработки необходимых ресурсов, что приведет к более быстрой загрузке и более отзывчивому взаимодействию с пользователем.

Использование спрайтов для изображений и иконок

Использование спрайтов изображений — еще один метод сокращения сетевых запросов и повышения производительности веб-сайта. Спрайты — это, по сути, один файл изображения, содержащий несколько изображений меньшего размера, таких как значки или элементы пользовательского интерфейса.

Что такое спрайт изображения

Спрайт изображения — это большое изображение, содержащее несколько изображений меньшего размера, расположенных в виде сетки. В коде CSS или JavaScript вы можете ссылаться на отдельные изображения в спрайте, указывая их положение и размеры. Этот метод позволяет загружать множество изображений с помощью всего одного HTTP-запроса, уменьшая задержку и сокращая время загрузки.

Создание спрайтов изображений

Для создания спрайта изображения можно использовать различные инструменты, такие как:
  • Инструменты генератора спрайтов: Онлайн-инструменты, такие как SpritePad или Stitches, позволяют загружать несколько изображений и автоматически генерировать спрайт вместе с соответствующим кодом CSS.
  • Программное обеспечение для редактирования изображений: такие программы, как Adobe Photoshop или GIMP, можно использовать для ручного создания спрайтов, упорядочивая меньшие изображения в новом файле и экспортируя результат в виде одного изображения.

Пример кода CSS: использование спрайтов изображений

Предположим, что есть изображение спрайта с именем icons.png, содержащее несколько значков. Вы можете использовать следующий CSS код для отображения отдельных значков в качестве фоновых изображений для разных элементов:
.icon {
  width: 32px;
  height: 32px;
  background-image: url('icons.png');
}

.icon-search {
  background-position: 0 0;
}

.icon-settings {
  background-position: -32px 0;
}

.icon-user {
  background-position: -64px 0;
}
Каждый класс значков определяет положение соответствующей иконки внутри спрайта, что позволяет отобразить нужное изображение без дополнительных HTTP-запросов. Объединяя эти меньшие изображения в один файл, браузеру нужно запросить только одно изображение, уменьшая количество HTTP-запросов.

Ленивая загрузка ресурсов

Ленивая загрузка — это метод, который откладывает загрузку некритических ресурсов до тех пор, пока они действительно не понадобятся. Это означает, что вместо того, чтобы загружать все ресурсы заранее, вы загружаете только те, которые необходимы для немедленного просмотра, в то время как остальные извлекаются по мере их актуальности. Отложенная загрузка может значительно улучшить начальное время загрузки и воспринимаемую производительность веб-сайта, особенно при работе с большими ресурсами, такими как изображения или длинные скрипты.

Пример кода JavaScript: реализация отложенной загрузки

Чтобы проиллюстрировать отложенную загрузку, давайте воспользуемся примером загрузки изображений только тогда, когда они становятся видимыми в окне просмотра. Это можно сделать с помощью API IntersectionObserver. Вот простая реализация: Во-первых, добавьте data-src к элементам изображения, содержащий фактический источник изображения:
<img data-src="path/to/image.jpg" class="lazy-load" alt="An example image">
Затем создайте скрипт, который настраивает IntersectionObserver для загрузки изображений по мере их поступления в окно просмотра (viewport):
document.addEventListener('DOMContentLoaded', function () {
  const lazyImages = [].slice.call(document.querySelectorAll('.lazy-load'));

  if ('IntersectionObserver' in window) {
    const lazyImageObserver = new IntersectionObserver(function (entries, observer) {
      entries.forEach(function (entry) {
        if (entry.isIntersecting) {
          const lazyImage = entry.target;
          lazyImage.src = lazyImage.dataset.src;
          lazyImage.classList.remove('lazy-load');
          lazyImageObserver.unobserve(lazyImage);
        }
      });
    });

    lazyImages.forEach(function (lazyImage) {
      lazyImageObserver.observe(lazyImage);
    });
  }
});
В этом примере IntersectionObserver следит за тем, чтобы изображения .lazy-load попадали в окно просмотра. При обнаружении изображения атрибуту src присваивается атрибут data-src, что приводит к фактической загрузке изображения. После загрузки образа класс .lazy-load удаляется, и наблюдение за изображением останавливается (.unobserve()). Используя эту простую технику отложенной загрузки, вы можете гарантировать, что загружаются только те изображения, которые в данный момент находятся в поле зрения, уменьшая количество сетевых запросов и улучшая начальное время загрузки вашего веб-сайта.

Использование кэширования

Производительность веб-сайта является решающим фактором в обеспечении отличного пользовательского опыта. Одним из важных методов повышения производительности является кэширование, которое позволяет браузерам хранить копии ресурсов вашего веб-сайта, таких как изображения, таблицы стилей и скрипты. Это снижает потребность в повторных загрузках и ускоряет время загрузки. В этом разделе мы рассмотрим концепцию кэширования и то, как вы можете использовать его для повышения производительности вашего сайта.

Кэширование браузера

Кэширование браузера — это механизм, который позволяет веб-браузерам локально хранить копии файлов веб-сайта. Когда пользователь повторно посещает ваш сайт, браузер может загружать эти ресурсы из кэша вместо того, чтобы загружать их снова, что приводит к более быстрой загрузке и снижению нагрузки на сервер. Настроив сервер на доставку соответствующих заголовков кэширования, можно контролировать, какие ресурсы кэшируются и на какой срок.

Заголовки Cache-Control и ETag

Двумя важными заголовками для управления кэшированием браузера являются Cache-Control и ETag. Заголовок Cache-Control позволяет задать директивы кэша, такие как максимальный срок службы ресурса в кэше или необходимость его повторной проверки. Например, можно использовать Cache-Control: public, max-age=3600, чтобы указать, что ресурс может кэшироваться в течение одного часа. Заголовок ETag предоставляет уникальный идентификатор (обычно хэш) для определенной версии ресурса. Когда браузер запрашивает ресурс, он отправляет значение ETag, которое находится в его кэше. Если значение ETag сервера совпадает со значением, отправленным браузером, сервер отвечает статусом 304 Not Modified, и браузер использует кэшированную версию. Этот механизм помогает гарантировать, что браузер всегда имеет самую последнюю версию ресурса.

Настройка кэширования на стороне сервера

Чтобы включить кэширование браузера, необходимо настроить сервер на доставку соответствующих заголовков для ресурсов. Этот процесс зависит от программного обеспечения сервера. Например, на сервере Apache вы можете использовать файл .htaccess для установки заголовков кэширования:
<filesMatch ".(css|js|jpg|png)$">
  Header set Cache-Control "public, max-age=86400"
</filesMatch>
Эта конфигурация задает заголовок Cache-Control для файлов CSS, JS, JPG и PNG, что позволяет кэшировать их в течение 24 часов. Используя кэширование браузера, вы можете значительно сократить объем данных, которые необходимо извлекать при повторном посещении пользователем вашего сайта, ускоряя время загрузки и улучшая общий пользовательский опыт.

Использование асинхронной загрузки

По мере усложнения веб-сайтов управление загрузкой файлов JavaScript становится все более важным для производительности. По умолчанию браузеры загружают скрипты синхронно, блокируя процесс отрисовки до тех пор, пока скрипт не будет полностью загружен и выполнен. Асинхронная загрузка позволяет загружать скрипты параллельно с другими ресурсами, предотвращая их блокировку рендеринга и сокращая общее время загрузки. В этом разделе мы обсудим, как использовать асинхронную загрузку файлов JavaScript для повышения производительности вашего веб-сайта.

Асинхронная загрузка файлов JavaScript

Асинхронная загрузка позволяет браузерам загружать и выполнять файлы JavaScript, не блокируя рендеринг остальной части страницы. Такой подход не только ускоряет первоначальный рендеринг вашего веб-сайта, но и снижает риск того, что медленный или не отвечающий скрипт вызовет задержки. С помощью атрибутов async и defer можно управлять загрузкой и выполнением файлов JavaScript.

Использование атрибутов Async и Defer

Атрибуты async и defer можно добавить в тег <script>, чтобы включить асинхронную загрузку:
  • async: атрибут async указывает браузеру загрузить сценарий, не блокируя рендеринг. Как только скрипт будет загружен, браузер приостановит рендеринг для его выполнения. Это полезно для скриптов, которые не полагаются на другие скрипты или полную загрузку модели DOM.
  • defer: атрибут defer предписывает браузеру загрузить скрипт, не блокируя рендеринг, но откладывает выполнение до тех пор, пока модель DOM не будет полностью проанализирована. Это полезно для скриптов, зависящих от модели DOM или других скриптов.
Важно отметить, что эти атрибуты следует использовать только с внешними файлами скриптов, так как они не влияют на встроенные скрипты.

Пример кода JavaScript: использование async и defer

Рассмотрим пример использования атрибутов async и defer в HTML-файле:
<!DOCTYPE html>
<html>
<head>
  <!-- Использование атрибута defer -->
  <script src="main.js" defer></script>
</head>
<body>
  <!-- Использование атрибута async -->
  <script src="analytics.js" async></script>
</body>
</html>
В этом примере main.js загружается с атрибутом defer, гарантируя, что он не будет блокировать рендеринг и будет выполнен после полного анализа DOM. Между тем, analytics.js загружается с атрибутом async, что позволяет ему загружаться и выполняться независимо от остальной части страницы. Используя асинхронную загрузку файлов JavaScript, вы можете свести к минимуму ресурсы, блокирующие рендеринг, и повысить производительность и удобство работы вашего веб-сайта.

Использование лучших практик для более быстрой загрузки и улучшения UX

Оптимизация веб-сайта — это непрерывный процесс, и для максимальной производительности важно идти в ногу с последними передовыми методами.

Разделение кода

Разделение кода — это метод, который включает в себя разбиение кода JavaScript на более мелкие, более управляемые фрагменты, которые загружаются только при необходимости. Это уменьшает объем кода, который необходимо загрузить и проанализировать, что приводит к более быстрой начальной загрузке и более плавному взаимодействию. Разделение кода особенно полезно для одностраничных приложений (SPA) и больших веб-сайтов со сложной функциональностью. Несколько инструментов могут помочь вам реализовать разделение кода, например Webpack и React.lazy:
  • Webpack: Этот популярный сборщик предлагает встроенную поддержку разделения кода. Используя функцию динамического импорта import(), вы можете загружать модули JavaScript по запросу, сокращая время первоначальной загрузки.
  • React.lazy: Если вы используете React, функция React.lazy позволяет загружать компоненты лениво по мере необходимости, что еще больше оптимизирует ваше приложение.

Пример кода JavaScript: реализация разделения кода

Ниже приведен пример разделения кода с помощью Webpack и React:
import React, { lazy, Suspense } from 'react';

// Ленивая загрузка компонента с React.lazy
const MyComponent = lazy(() => import('./MyComponent'));

function App() {
  return (
    <div>
      <Suspense fallback={<div>Loading...</div>}>
        <MyComponent />
      </Suspense>
    </div>
  );
}

export default App;
В этом примере MyComponent загружается лениво, когда это необходимо, что не позволяет блокировать начальную отрисовку приложения.

Использование сетей доставки контента (CDN)

Сети доставки контента (CDN) — это мощный способ повысить производительность веб-сайта за счет распределения контента по нескольким серверам по всему миру. Это гарантирует, что пользователи смогут получить доступ к ресурсам вашего веб-сайта с сервера, расположенного рядом с их местоположением, что уменьшит задержку и ускорит время загрузки. Интеграция вашего веб-сайта с CDN может значительно улучшить взаимодействие с пользователем, особенно для пользователей в отдаленных географических точках.

Оптимизация манипулирования DOM и обработки событий

Эффективное манипулирование DOM имеет решающее значение для повышения производительности веб-сайта. Модель DOM (Document Object Model) представляет структуру веб-страницы, и управление ею может быть ресурсоемким. Оптимизируя код JavaScript для работы с DOM, вы можете свести к минимуму влияние на производительность и создать более плавный пользовательский интерфейс.

Пример кода JavaScript: эффективное манипулирование DOM

Ниже приведен пример оптимизации манипуляций с DOM:
// Неэффективная работа с DOM
const list = document.querySelector('#list');

for (let i = 0; i < 1000; i++) {
  const item = document.createElement('li');
  item.textContent = `Item ${i}`;
  list.appendChild(item);
}
// Эффективная работа с DOM
const list = document.querySelector('#list');
const fragment = document.createDocumentFragment();

for (let i = 0; i < 1000; i++) {
  const item = document.createElement('li');
  item.textContent = `Item ${i}`;
  fragment.appendChild(item);
}

list.appendChild(fragment);
В эффективном примере мы используем DocumentFragment для пакетных операций DOM, уменьшая количество перекомпоновок и перерисовок и повышая производительность.

Инструменты разработчика браузера

Большинство современных браузеров поставляются со встроенными инструментами разработчика, которые помогут вам отслеживать и оптимизировать производительность вашего веб-сайта. Например, Chrome DevTools и Firefox Developer Tools предлагают такие функции, как профилирование производительности, мониторинг сети и отладка JavaScript. С помощью этих средств можно выявить узкие места и области, требующие улучшения в коде.

Онлайн-инструменты

Существуют также онлайн-инструменты, которые помогут вам проанализировать и оптимизировать производительность вашего сайта. Некоторые популярные варианты включают в себя:
  • Google PageSpeed Insights: Этот инструмент анализирует ваш веб-сайт и предоставляет предложения по повышению его производительности. Он учитывает такие факторы, как время отклика сервера, оптимизация изображений и методы загрузки JavaScript.
  • WebPageTest: WebPageTest — это комплексный инструмент тестирования производительности, который предоставляет подробную информацию о времени загрузки вашего веб-сайта, рендеринге и многом другом. Вы также можете сравнить производительность своего веб-сайта с другими сайтами или запустить тесты из разных мест и устройств.
Оставаясь в курсе последних лучших практик и отслеживая показатели производительности вашего веб-сайта, вы можете быть уверены, что ваш сайт останется быстрым, эффективным и удобным для пользователя.

Итоги

В этой статье мы рассмотрели методы оптимизации JavaScript, которые помогут вам повысить производительность вашего сайта и удобство для пользователей. От минимизации размеров файлов и сокращения сетевых запросов до использования кэширования и асинхронной загрузки — эти методы могут оказать значительное влияние на время загрузки вашего сайта.

Как использовать переменные среды в React

год назад·5 мин. на чтение

О различных способах доступа к переменным среды в React приложении

Если у вас нет опыта server side программирования, переменные среды могут показаться чем-то магическим. Этот недостаток знаний может поставить вас в тупик, когда вы закончите создавать приложения todo на localhost и попытаетесь создать продакшн сборку в первый раз. Если вы хотите узнать, как использовать переменные среды в ваших собственных инструментах, или глубоко погрузиться в то, как переменные среды работают в React, вы можете продолжить чтение этой статьи. Но если вы ищете быстрое решение и используете Create React App, ознакомьтесь с документацией здесь. Пользователи NextJS, ознакомьтесь с документацией здесь.

Проблема, которую мы решаем

Как объявить различные URL-адресов API для локальной разработки и для продакшн сборки.

Как решить эту проблему

Использовать переменные среды. При работе с React переменные среды — это переменные, доступные через глобальный объект process.env. Этот глобальный объект предоставляется вашей средой через NodeJS. И поскольку у нас нет NodeJS в браузере, нам понадобится webpack. В этой статье рассмотрим два способа установки и использования переменных среды для ваших React проектов с помощью webpack: с помощью скриптов npm и с помощью файла .env.

Способ 1: Использование скриптов npm для установки переменных среды

Во-первых, установите webpack и webpack-cli из npm:
npm install --save-dev webpack webpack-cli
Перейдите в файл package.json, проверьте поле scripts и найдите команды, которые запускают webpack. Вероятно, это будет выглядеть примерно так:
{
  // ...
  scripts: {
    "dev": "webpack --config webpack.config.dev.js",
    "build": "webpack --config webpack.config.build.js"
  }
}
Давайте добавим некоторые переменные окружения с флагом --env в scripts:
{
  // ...
  scripts: {
    "dev": "webpack --env.API_URL=http://localhost:8000 --config webpack.config.dev.js",
    "build": "webpack --env.API_URL=https://www.myapi.com --config webpack.config.build.js"
  }
}
Мы добавили --env.API_URL= часть в обоих скриптах. Теперь запустите команду npm run dev, перейдите к React компоненту и используйте process.env.API_URL:
const App = () => <h1>{process.env.API_URL}</h1>;
И тут проект должен сломаться.
Сломается он потому, что когда мы используем переменные окружения в клиентском коде, они на самом деле просто служат заполнителями, которые будут заменены при компиляции нашего кода. Проблема в том, что мы не сказали webpack скомпилировать эти переменные в реальные значения. Давайте сделаем это в нашем конфигурационном файле webpack с плагином DefinePlugin:
const webpack = require('webpack'); // DefinePlugin это часть webpack, поэтому это require обязателен

// возвращаем функцию из config файла
// переменная `env` будет просто объектом { API_URL: 'http://localhost:8000' }
// в ней будут содержаться все переменные среды, которые мы указали в package.json

module.exports = (env) => {
  // этот объект это сама конфигурация webpack
  return {
    plugins: [
      // добавим плагин в список плагинов
      new webpack.DefinePlugin({ `process.env.API_URL`: JSON.stringify(${env.API_URL}) })
    ]
  };
};
DefinePlugin требует, чтобы вы буквально определили свои «переменные среды». Вы также можете применить .reduce к переменным среды, чтобы получить объект:
module.exports = (env) => {
  // создаем объект из переменных среды
  const envKeys = Object.keys(env).reduce((prev, next) => {
    prev[`process.env.${next}`] = JSON.stringify(env[next]);
    return prev;
  }, {});

  return {
    plugins: [
      new webpack.DefinePlugin(envKeys)
    ]
  };
};
Если вы запустите команду сейчас, все скомпилируется, и ваш process.env.API_URL будет скомпилирован в правильный URL-адрес на основе переменной среды.

Способ 2: Использование файла .env для установки переменных среды

Вся идея здесь состоит в том, чтобы создать файл (называемый просто .env), заполненный переменными среды. Чтобы защитить пароли и другие значения переменных среды, добавьте файл .env в .gitignore. Фронтенд код будет ссылаться на одну и ту же переменную среды (process.env.API_URL) в обеих средах (при локальной разработке и на продакшене), но поскольку вы определили разные значения в своих .env, скомпилированные значения будут отличаться.

Создадим файл .env

Этот файл должен находиться в корневом каталоге проекта и называться .env. Добавим переменную:
API_URL=http://localhost:8000

Обработка файла .env

Теперь нам нужен какой-то способ обработки файлов и их содержимого. Для этого мы собираемся использовать популярный npm пакет под названием dotenv. Dotenv широко используется (create-react-app использует его). Он будет получать переменные из нашего файла .env и добавлять их в глобальный process.env.
$ npm install --save-dev dotenv

Добавление переменных в проект React

Есть одна проблема. Dotenv работает только на стороне сервера. А мы хотим использовать переменные среды на стороне клиента, на фронтенде. В данном случае мы разрабатываем клиентскую часть. И dotenv нужна какая-то среда для фактического хранения переменных. Здесь поможет Webpack. Воспользуемся плагином DefinePlugin в нашей webpack конфигурации:
const webpack = require('webpack');
const dotenv = require('dotenv');

module.exports = () => {
  // dotenv вернет объект с полем parsed 
  const env = dotenv.config().parsed;
  
  // сделаем reduce, чтобы сделать объект
  const envKeys = Object.keys(env).reduce((prev, next) => {
    prev[`process.env.${next}`] = JSON.stringify(env[next]);
    return prev;
  }, {});

  return {
    plugins: [
      new webpack.DefinePlugin(envKeys)
    ]
  };
};
При необходимости проверьте параметры конфигурации dotenv в документации на github. Вызов .config() в dotenv вернет объект со всеми переменными среды, установленными в вашем файле .env через поле parsed. Теперь давайте проверим наш React код:
const App = () => <h1>{process.env.API_URL}</h1>;
И это работает! Он показывает значение переменной среды API_URL, определенной в .env. Осталась только одна проблема: нам все еще нужно определить различные API_URL для локальной разработки и продакшена.

Различные переменные среды для разных сред

Вся идея состоит в том, чтобы создать разные файлы .env для разных сред и позволить webpack выбрать правильный файл .env в зависимости от активной среды. Поэтому создайте два файла в корневом каталоге проекта:
  • .env (содержит все переменные среды для продакшн)
  • .env.development (содержит все переменные среды для локальной разработки)
Чтобы было ясно: мы добавляем к имени файла .env сопоставление имени среды. Общепринятой практикой является использование исходного файла .env для продакшн сборки, поэтому мы не будем добавлять постфикс для продакшн .env .

Настройка активной среды с помощью scripts в package.json

Мы собираемся использовать scripts (как мы это делали в методе 1), чтобы установить текущую среду в нашем package.json:
{
  "scripts": {
    "dev": "webpack --env.ENVIRONMENT=development --config webpack.config.dev.js",
    "build": "webpack --env.ENVIRONMENT=production --config webpack.config.build.js"
  }
}
Так как мы определили нашу среду в нашем package.json, теперь она доступна в нашей конфигурации webpack. Следующим шагом будет переход к webpack конфигурации и дать ему использовать файл .env, принадлежащий активной среде. Как и раньше, мы используем dotenv, но теперь мы указываем пользовательский path в параметрах.
const webpack = require('webpack');
const dotenv = require('dotenv');
const fs = require('fs'); // для проверки существования файла
const path = require('path'); // для получения текущего пути

module.exports = (env) => {
  // получаем корневой путь (предполагаем, что webpack config лежит в корне проекта)
  const currentPath = path.join(__dirname);
  
  // путь по умолчанию (будет использован для продакшена - `.env`)
  const basePath = currentPath + '/.env';

  // склеиваем имя среды с именем файла для получения имени env файла
  const envPath = basePath + '.' + env.ENVIRONMENT;

  // проверяем существует ли env файл, если нет используем имя по умолчанию
  const finalPath = fs.existsSync(envPath) ? envPath : basePath;

  // устанавливаем параметр path в dotenv
  const fileEnv = dotenv.config({ path: finalPath }).parsed;
  
  // сделаем reduce, чтобы получить объект
  const envKeys = Object.keys(fileEnv).reduce((prev, next) => {
    prev[`process.env.${next}`] = JSON.stringify(fileEnv[next]);
    return prev;
  }, {});

  return {
    plugins: [
      new webpack.DefinePlugin(envKeys)
    ]
  };
Эта вся необходимая настройка, но вы можете создать больше .env файлов для большего количества сред (например, .env.staging) по аналогии.