Композиция функций. Функциональное программирование
2 года назад·5 мин. на чтение
Композиция — это способ построения больших модулей из более мелких. В этой статье подробно рассмотрим композицию на примере JavaScript.
Это серия статей о функциональном программировании:
Пример работы функции
Рассмотрим пример с более конкретными функциями:
Функция
Реализация
Добавим
Добавим для всех параметров, кроме
- Парадигмы программирования
- Композиция (рассматривается в этой статье)
- Функторы
- Каррирование
- Чистые функции
- Функции первого класса
Что такое композиция функций?
Композиция — это процесс объединения небольших единиц в более крупные, которые решают более крупные задачи. При композиции входные данные одной функции приходят из выходных данных предыдущей.Как работает композиция?
Математическая запись определения композиции выглядит следующим образом:В JavaScript композиция, где(f ∘ g)(x) = f(g(x))
f
и g
- это функции, будет выглядеть так:
Функцияconst compose = (f, g) => (x) => f(g(x))
compose
является композицией функций f
и g
. Выходные данные функции g
будут переданы на вход функции f
. По другому эта запись выглядела бы следующим образом:
const compose = (f, g) => { return (x) => { const gResult = g(x) const fResult = f(gResult) return fResult } }
Пример работы функции compose
Рассмотрим пример с более конкретными функциями:
Теперь составим композицию из этих маленьких функций -const getAge = (user) => user.age const isAgeAllowed = (age) => age >= 30
getAge
и isAgeAllowed
:
const user = { name: 'John', age: 35 } const isAllowedUser = compose( isAgeAllowed, getAge ) isAllowedUser(user) // true
compose
выполняет функции справа налево. Мы отправляем объект user
в функцию isAgeAllowed
. Далее user
попадает сначала в getAge
, потом результат этой функции попадает в isAgeAllowed
.
compose
и pipe
Функция pipe
очень похожа на функцию compose
. Они выполняют одну и ту же роль. Обе объединяют функции в цепочки. Однако их реализация и порядок выполнения функций отличается.
Реализация compose
и pipe
compose
реализован следующим образом:
const compose = (...fns) => { return (x) => fns.reduceRight((acc, fn) => fn(acc), x) }
pipe
реализован следующим образом:
Они отличаются лишь в применении функцииconst pipe = (...fns) => { return (x) => fns.reduce((acc, fn) => fn(acc), x) }
reduce
и reduceRight
. Это влияет лишь на порядок выполнения функций.
Порядок выполнения функций
compose
выполняет функции справа налево.
pipe
выполняет функции слева направо.
Пример
Предположим имеется 3 функции:f
, g
и h
.
При использовании compose
:
Порядок выполнения функций будет такимcompose(f, g, h) ← ← ←
h
, g
и далее f
(справа налево). И выходные данные будут передаваться в следующую функцию.
При использовании pipe
:
Порядок выполнения функций будет такимpipe(f, g, h) → → →
f
, g
и далее h
(слева направо). И выходные данные будут передаваться в следующую функцию.
Какую функцию использовать?
compose
и pipe
не сильно отличаются друг от друга. Они решают одну и ту же задачу. compose
ближе к математической нотации (f ∘ g)(x) = f(g(x))
. С pipe
визуально легче воспринимать порядок выполнения функций.
Реальный пример
В следующих примерах будем использоватьpipe
. Предположим, нужно сделать простой калькулятор цен, в котором нужно применить:
- налог (30%, по умолчанию),
- сервисный сбор (10у.е., по умолчанию),
- скидку,
- купон,
- цену доставки на основе веса.
const priceCalculator = ( taxPercentage = 0.3, serviceFees = 10, price, discount, percentCoupon, weight, shippingPricePerKg ) => { // реализация }
Реализация без композиции
Эта функция выполняет свою задачу, но ее сложно читать, тестировать и отлаживать.const priceCalculator = ( taxPercentage = 0.3, serviceFees = 10, price, discount, percentCoupon, weight, shippingPricePerKg ) => { return ( price - (price * percentCoupon) - discount + (weight * shippingPricePerKg) + serviceFees ) * (1 + taxPercentage) }
Реализация с композицией
Эта реализация выглядит более чистой, ее легко тестировать и отлаживать. Все это благодаря модульности.const priceCalculator = ( taxPercentage = 0.3, serviceFees = 10, price, discount, percentCoupon, weight, shippingPricePerKg ) => { const applyTax = (val) => val * (1 + taxPercentage) const applyServiceFees = (val) => val + serviceFees const applyPercentCoupon = (val) => val - val * percentCoupon const applyDiscount = (val) => val - discount const applyShippingCost = (val) => val + weight * shippingPricePerKg return pipe( applyPercentCoupon, applyDiscount, applyShippingCost, applyServiceFees, applyTax )(price) }
Запуск примера
Запустим, передав толькоprice
. Очевидно, получим неверный результат, т.к. передали не все обязательные параметры.
Сначала продебажим. Для дебагаpriceCalculator(10) // NaN
pipe
и compose
можно добавить удобную функцию inspect
. Она просто логирует в консоль входные данные и возвращает эти данные без изменений.
const inspect = (label) => (x) => { console.log(`${label}: ${x}`) return x }
inspect
в цепочку выполнения.
Результат будет примерно таким:const priceCalculator = ( taxPercentage = 0.3, serviceFees = 10, price, discount, percentCoupon, weight, shippingPricePerKg ) => { const applyTax = (val) => val * (1 + taxPercentage) const applyServiceFees = (val) => val + serviceFees const applyPercentCoupon = (val) => val - val * percentCoupon const applyDiscount = (val) => val - discount const applyShippingCost = (val) => val + weight * shippingPricePerKg return pipe( inspect('price'), applyPercentCoupon, inspect('after applyPercentCoupon'), applyDiscount, inspect('after applyDiscount'), applyShippingCost, inspect('after applyShippingCost'), applyServiceFees, inspect('after applyServiceFees'), applyTax )(price) }
Видим,priceCalculator(10) // price: undefined // after applyPercentCoupon: NaN // ...
price
- undefined
. Это произошло потому что price
- третий аргумент, а мы передаем его первым.
Быстрый фикс
Сделаем так, чтобы функция принимала один объект:Далее, используем:const priceCalculator = ({ taxPercentage = 0.3, serviceFees = 10, price, discount, percentCoupon, weight, shippingPricePerKg }) => { // ... }
Все еще получаемpriceCalculator({ price: 10 }) // price: 10 // after applyPercentCoupon: NaN // ...
NaN
, в этот раз потому что не был передан percentCoupon
и он имеет значение undefined
.
price
, значения по умолчанию.
Если запустить заново, получим результат:const priceCalculator = ({ taxPercentage = 0.3, serviceFees = 10, price, discount = 0, percentCoupon = 0, weight = 0, shippingPricePerKg = 0 }) => { // ... }
Это пример того как композиция позволяет нам тестировать и исправлять код проще и быстрее, просто проверяя области, которые вызывают подозрения. Проблема, которую мы отлаживали, была очень простой. Когда мы переходим к более масштабным модулям, все становится еще более трудным для проверки. Большие атомарные функции трудно поддерживать. Разделение функций на более мелкие упрощает отладку, тестирование, поддержку и разработку функций.priceCalculator({ price: 10 }) // 26
Для чего нужна композиция?
Композиция это объединение меньших модулей в более крупные. Если мы думаем оперируем модулями (что обеспечивается композицией), мы улучшаем:- модульное мышление,
- тестируемость,
- возможность отладки,
- поддерживаемость.
Итоги
Композиция — это способ построения больших модулей из более мелких, что делает наш код более модульным. Таким образом, проще отлаживать, тестировать, поддерживать, повторно использовать и интереснее разрабатывать функции.Что такое каррирование? Функциональное программирование
2 года назад·5 мин. на чтение
В этой статье на простых и доступных примерах рассмотрим одну из концепций функционального программирования - Каррирование.
Это серия статей о функциональном программировании:
Представим, что у нас есть функция
Итак, сначала мы создали
Пояснение к функции
Функция
Каждый раз, когда мы вызываем
Каррирование действительно внесло улучшения, нам не нужно каждый раз указывать локаль. Вместо этого каррированная функция
Для лучшего понимания можно развернуть каррирование и вместо этого использовать обычные функции.
- Парадигмы программирования
- Композиция
- Функторы
- Каррирование (рассматривается в этой статье)
- Чистые функции
- Функции первого класса
Что такое каррирование?
Каррированная функция — это функция, которая продолжает возвращать функции до тех пор, пока не будут отправлены все ее параметры.Как работает каррирование?
Предположим, есть функция сложенияadd
.
Простейшая реализация каррирования — заставить функцию возвращать функцию и т. д.const add = (a, b) => a + b
Эту функцию можно использовать так.const add = (a) => (b) => a + b
const addOne = add(1) // addOne = (b) => 1 + b
curry
, которая принимает функцию и каррирует ее.
Как мы видим,const add = curry((a, b) => a + b)
curry
— это функция, которая использует другую функцию для ленивой обработки параметров. Итак, теперь мы можем вызвать ее следующим образом.
const addOne = add(1) // addOne = (b) => 1 + b
addOne
, передав 1
в качестве первого параметра (a
) каррированной функции добавления. Что привело к другой функции, которая ожидает остальные параметры, где логика добавления не будет выполняться, пока не будут предоставлены все параметры.
Теперь, передаваяaddOne(2) // 3
2
(как b
) в addOne
выполняет логику 1 + 2
.
Пояснение к функции curry
Функция curry
принимает функцию и делает ее параметры ленивыми, другими словами, вы предоставляете эти параметры по мере необходимости. Так же, как addOne
.
Вы по-прежнему можете вызывать каррированную версию функции добавления следующим образом.
Таким образом, он либо принимает аргументы по частям, либо все аргументы сразу.const three = add(1, 2)
Для чего нужно каррировать функции?
Каррирование делает код:- Чище
- Уменьшает количество повторяющихся параметров и делает код более лаконичным
- Более компонуемым
- Переиспользуемым
Почему каррирование делает код лучше?
Некоторые функции принимают конфигурацию в качестве входных данных
Если у нас есть функции, которые принимают конфигурацию (начальные настройки), нам лучше их каррировать, потому что эти конфигурации, вероятно, будут повторяться снова и снова. Предположим, что у нас есть функция перевода, которая принимает локаль и текст для перевода.Использование будет выглядеть так.const translate = (locale, text) => { /* логика перевода */ }
translate('ru', 'Hello') translate('ru', 'Goodbye') translate('ru', 'How are you?')
translate
, мы должны указывать язык и текст. Что является избыточным для предоставления локали при каждом вызове.
Но вместо этого давайте каррируем translate
следующим образом.
Теперьconst translate = curry( (locale, text) => { /* логика перевода */ } ) const translateToRu = translate('ru')
translateToRu
имеет ru
в качестве locale
, предоставленного каррированной функции translate
, и ожидает текста. Мы можем использовать это так.
translateToRu('Hello') translateToRu('Goodbye') translateToRu('How are you?')
translateToRu
содержит locale
из-за каррирования.
После каррирования - в этом конкретном примере код стал:
- чище
- менее многословным и менее избыточным.
На практике
На практике у нас есть динамическая локаль (у каждого пользователя свой язык), может бытьfr
, en
, de
или что-то еще. Поэтому вместо этого лучше переименовать translateToRu
в translateTo
, где translateTo
может быть загружен с любой локалью.
Теперь у нас есть translate
, который принимает locale
как конфигурацию и text
как данные. Благодаря тому, что translate
каррирован, мы смогли отделить параметры конфигурации от данных.
Зачем отделять конфигурации от данных?
Многие компоненты и функции нуждаются в использовании некоторой функциональности (в нашем случае,translateTo
), но не должны или не могут знать о части конфигурации (locale
). Эти компоненты или функции имеют только часть данных (text
). Таким образом, эти функции смогут использовать эту функцию без необходимости знать о части конфигурации.
Таким образом, этот компонент или функция будут меньше связаны с системой, что сделает компоненты более компонуемыми и более удобными в сопровождении.
Когда применять каррирование?
Когда мы знаем, что в функции есть конфигурация и есть данные, лучше их каррировать. Каррирование даст нам возможность их разделить. И это признак зрелого дизайна системы. Потому что одним из основных столпов качества кода является разделение задач. Даже если функции нужны все параметры для правильной работы, мы все равно лучше знаем, когда передавать параметры и на каком уровне приложения.Связь между замыканием и каррированием
Замыкание - это функция, возвращаемая «родительской» функцией и имеющая доступ к внутреннему состоянию родительской функции. Каррирование всегда приводит к замыканию. Потому что каждая функция, возвращаемая каррированной функцией, будет снабжена внутренним состоянием родителей.Примеры каррирования
Перед тем как продолжить
Добавим некоторые утилиты, чтобы мы могли перейти к примерам. Прототип массива имеет такие утилиты, какfilter
, map
и другие. Но они не поддерживают каррирование, потому что используют запись через точку (.
).
Итак, давайте конвертируем их в каррируемый формат.
Теперь мы можем использовать их так.const filter = (fn, list) => list.filter(fn) const map = (fn, list) => list.map(fn) const startsWith = (starter, s) => s.startsWith(starter)
Мы исключили запись через точку и передали обработанные данные в качестве последнего параметра. Затем мы их каррируем. Функцияconst lessThan21 = user => user.age < 21 // Вместо такого использования... const filteredUsers = users.filter(lessThan21 ) // ...будем использовать такое const filteredUsers = filter(lessThan21, users)
curry
будет принимать функцию и возвращать каррированную функцию.
const filter = curry((fn, list) => list.filter(fn)) const map = curry((fn, list) => list.map(fn)) const startsWith = curry((starter, s) => s.startsWith(starter))
Пример 1
Дан список чисел, нужно увеличить все числа на 1. Вход:[1, 2, 3, 4, 5]
Выход: [2, 3, 4, 5, 6]
Реализация:
// каррированная функция add была определена ранее const addOne = add(1) const incrementNumbers = map(addOne) const incrementedNumbers = incrementNumbers(numbers)
Пример 2
Дана строка, оставить все слова, начинающиеся с буквыc
.
Вход: "currying javascript function”
Выход: “currying”
Реализация:
const startsWithC = startsWith('c') const filterStartsWithC = filter(startsWithC) const filteredWords = filterStartsWithC(words)
Пример 3
Дан список диапазонов и список чисел. Создайте массив функций, которые могут фильтровать числа на основе предоставленных диапазонов.Выход: массив функций. Каждая функция может принимать числа и возвращать отфильтрованные числа, которые находятся в заданном диапазоне.const ranges = [ { min: 10, max: 100 }, { min: 100, max: 500 }, { min: 500, max: 999 } ] const numbers = [30, 50, 110, 200, 650, 700, 1000] // 30 и 50 в первом диапазоне // 110 и 200 во втором диапазоне // 650 и 700 в третьем диапазоне // 1000 не принадлежит ни одному диапазону
В этом примере есть двойное каррирование,const isInRange = curry( (range, val) => val > range.min && val < range.max ) const filters = ranges.map((range) => filter(isInRange(range)))
filter
и isInRange
.
filters
теперь представляют собой список функций, каждая из которых ожидает numbers
для обработки.
const isInRange = (range, val) => val > range.min && val < range.max const filters = ranges.map( (range) => (numbers) => numbers.filter( number => isInRange(range, number) ) )