Парадигмы программирования - императивная и декларативная

2 года назад·5 мин. на чтение

В этой статье поговорим о парадигмах программирования. Затронем императивную и декларативную парадигмы. Для сравнения разберем несколько небольших примеров. В конце мы взглянем на парадигмы с точки зрения эволюции.

Это серия статей о функциональном программировании:
  1. Парадигмы программирования (рассматривается в этой статье)
  2. Композиция
  3. Функторы
  4. Каррирование
  5. Чистые функции
  6. Функции первого класса

Парадигмы программирования

Парадигма программирования — это стиль или "способ" программирования. Поэтому некоторые языки заставляют нас писать в определенной парадигме. Другие языки оставляют варианты открытыми для программиста, где каждая парадигма следует набору понятий. За всю историю компьютерного программирования инженеры разработали разные языки. Каждый язык основывался на одной или нескольких парадигмах. Эти парадигмы принадлежат к одной из следующих двух основных категорий:

1. Императивная парадигма

В императивных языках программирования поток управления является явным, где программист инструктирует программу, как изменить ее состояние. В императивную парадигму также включается:
  • Структурная парадигма
  • Объектно-ориентированная парадигма

2. Декларативная парадигма

В декларативной парадигме поток управления является неявным, когда программист указывает программе, что следует делать, не указывая, как это должно быть сделано. В декларативную парадигму также включается:
  • Функциональная парадигма
  • Логическая парадигма
  • Математическая парадигма
  • Реактивная парадигма
Большинство языков принадлежат либо к императивной, либо к декларативной парадигме, где каждая парадигма имеет набор понятий, которым необходимо следовать. Рассмотрим подробнее каждую парадигму.

Императивная парадигма

Императивная парадигма немного изменилась из-за структурной парадигмы, но у нее все еще есть проблемы:
  • Указание программе, как что-то делать (поток управления является явным)
  • Общее состояние
Чтобы понять эти проблемы рассмотрим примеры.

Проблема 1: Указание программе, как что-то делать (поток управления является явным)

Кейс: представьте себе 1000 сотрудников с руководителем, который ведет их по проекту. Руководитель начинает рассказывать 1000 сотрудников, как делать вещи одну за другой. Как вы думаете, насколько это будет плохо? Я почти уверен, что вы видите, что этот стиль управления на микроуровне имеет большие риски, ловушки и даже не сработает. Решение: Сгруппировать людей по зонам ответственности и делегировать в каждую группу руководителя группы. Руководитель каждой группы должен знать, как делать что-то для достижении цели. Это значительно уменьшит сложность, узкие места и станет намного проще в управлении. В этой аналогии
  • Руководитель = Программист
  • Руководители групп = Функции более высокого уровня
  • Сотрудники в каждой группе = Строки кода
Вывод: когда мы применяем организационную структуру более высокого порядка на программном уровне, наша жизнь становится проще.

Проблема 2: Общее состояние

Кейс: Представьте отца, у которого двое детей. У них есть общий банковский счет. Каждый месяц отец кладет на этот счет 1000 долларов. Оба ребенка не знают, что учетная запись используется совместно. Таким образом, они оба думают, что у каждого есть 1000 долларов, которые он может потратить на себя. В конце месяца оказывается, что на этом счету осталось -1000 долларов. Решение: У каждого ребенка должна быть отдельная учетная запись и указанная ежемесячная сумма. В этой аналогии:
  • Дети = Функции
  • Общий банковский счет = общее состояние
Вывод: Когда ваши функции имеют одно и то же состояние, они используют его неосознанно. Это испортит состояние вашей программы даже с двумя функциями. Так что всегда лучше, чтобы каждая функция имела собственное независимое состояние для использования.

Пример императивной парадигмы

Давайте посмотрим, как функция для суммирования может быть реализована в императивной парадигме.
const sum = (list) => {
  let result = 0
  for (let i = 0; i < list.length; i++) {
    result += list[i]
  }
  return result
}
Почему этот код считается императивным?
  1. Указание программе, как что-то делать (поток управления является явным): мы явно сообщаем циклу for, как работать. Также мы обращаемся к каждому элементу в массиве явно.
  2. Совместное состояние: результирующая переменная является общим состоянием, изменяющимся на каждой итерации (с общим состоянием в более крупных решениях будет гораздо сложнее справиться).

Декларативная парадигма

Декларативная парадигма — это когда программист указывает программе, что должно быть сделано, не указывая, как. В декларативной парадигме мы пишем функции, которые:
  • Описывают, что должна выполнять программа, а не как (неявный поток управления).
  • Не производят побочных эффектов (о которых мы поговорим позже).

Пример декларативной парадигмы

Мы увидели, как функция sum может быть реализована в императивной парадигме. Давайте посмотрим, как ее можно реализовать декларативно.
const add = (a, b) => a + b
const sum = (list) => list.reduce(add)
Похоже на магию? Но почему это считается декларативным?
  • Описано, что программа должна выполнять, а не как (неявный поток управления): нет явного итератора, нет явного указания циклу, как работать или как получить доступ к элементам. Это было достигнуто с помощью метода reduce.
  • Не производит побочных эффектов: общее состояние — это форма побочных эффектов, которая была полностью устранена с помощью метода reduce и функции add.

Еще одно сравнение

Что, если мы хотим суммировать только четные числа? Разберем эту задачу на примерах в разных парадигмах.

Императивная реализация

const evenSum = (list) => {
  let result = 0
  for (let i = 0; i < list.length; i++){
    if(list[i] % 2 === 0) {
      result += list[i]
    }
  }
  return result
}

Декларативная реализация

const evenSum = (list) => {    
  const isEven = (n) => n % 2
  const add = (a, b) => a + b
  return list.filter(isEven).reduce(add)
}
Как видим, если мы хотим сравнить обе парадигмы (императивную и декларативную), то декларативная парадигма (в нашем случае Функциональная парадигма) больше похожа на шестеренки. Вы разрабатываете свои шестеренки как отдельные единицы, затем добавляете их туда, где они вам нужны. Но в императивной парадигме это больше похоже на тесто. Почти все смешано и слито в один и тот же кусок код. В целом декларативная парадигма — это:
  • Предсказуемость
  • Тестируемость
  • Многоразовость
  • Настраиваемость
  • Кэшируемость
  • Поддерживаемость
  • Компонуемость
Некоторые из этих моментов не обязательно имеют смысл в контексте примера с функцией sum, но будут иметь смысл в следующих статьях о функциональном программировании.

Эволюция парадигм

Итак, у нас есть 2 основные парадигмы: императивная и декларативная, каждая из которых имеет подпарадигмы. Теперь поговорим подробнее о структурной, объектно-ориентированной и функциональной парадигмах. с эволюционной точки зрения. Каждая парадигма ограничивала способ программирования, вводя что-то новое.
  • Структурная парадигма: ограниченное использование goto и «потока передачи управления» за счет введения в наш код такой структуры, как if/else/then/loop и других. Другими словами, он ограничивает поток передачи управления.
  • Объектно-ориентированная парадигма: ограничение полиморфизма с использованием указателей на функции за счет введения полиморфизма с использованием наследования.
  • Функциональная парадигма: ограничения общего состояния и побочные эффекты за счет введения иммутабельности.
Имейте в виду, что каждая парадигма может использовать одну или несколько концепций других парадигм (например, как объектно-ориентированная, так и функциональная парадигмы используют концепции структурной парадигмы).

Итоги

В реальной жизни у нас разные парадигмы с разными стилями, которые требуют разного уровня мастерства. Практика большего количества парадигм даст вам больше возможностей. У объектно-ориентированной парадигмы есть свои особенности, у функционального программирования - свои. Чем сильнее вы становитесь в этих парадигмах, тем мощнее будут ваши решения.

Композиция функций. Функциональное программирование

2 года назад·5 мин. на чтение

Композиция — это способ построения больших модулей из более мелких. В этой статье подробно рассмотрим композицию на примере JavaScript.

Это серия статей о функциональном программировании:
  1. Парадигмы программирования
  2. Композиция (рассматривается в этой статье)
  3. Функторы
  4. Каррирование
  5. Чистые функции
  6. Функции первого класса

Что такое композиция функций?

Композиция — это процесс объединения небольших единиц в более крупные, которые решают более крупные задачи. При композиции входные данные одной функции приходят из выходных данных предыдущей.

Как работает композиция?

Математическая запись определения композиции выглядит следующим образом:
(f ∘ g)(x) = f(g(x))
В JavaScript композиция, где f и g - это функции, будет выглядеть так:
const compose = (f, g) => (x) => f(g(x))
Функция compose является композицией функций f и g. Выходные данные функции g будут переданы на вход функции f. По другому эта запись выглядела бы следующим образом:
const compose = (f, g) => {
  return (x) => {
    const gResult = g(x)
    const fResult = f(gResult)
    return fResult
  }
}

Пример работы функции compose

Рассмотрим пример с более конкретными функциями:
const getAge = (user) => user.age
const isAgeAllowed = (age) => age >= 30
Теперь составим композицию из этих маленьких функций - getAge и isAgeAllowed:
const user = { name: 'John', age: 35 }
const isAllowedUser = compose(
 isAgeAllowed,
 getAge
)
isAllowedUser(user) // true
compose выполняет функции справа налево. Мы отправляем объект user в функцию isAgeAllowed. Далее user попадает сначала в getAge, потом результат этой функции попадает в isAgeAllowed.

compose и pipe

Функция pipe очень похожа на функцию compose. Они выполняют одну и ту же роль. Обе объединяют функции в цепочки. Однако их реализация и порядок выполнения функций отличается.

Реализация compose и pipe

compose реализован следующим образом:
const compose = (...fns) => {
  return (x) => fns.reduceRight((acc, fn) => fn(acc), x)
}
pipe реализован следующим образом:
const pipe = (...fns) => {
   return (x) => fns.reduce((acc, fn) => fn(acc), x)
}
Они отличаются лишь в применении функции reduce и reduceRight. Это влияет лишь на порядок выполнения функций.

Порядок выполнения функций

compose выполняет функции справа налево. pipe выполняет функции слева направо.

Пример

Предположим имеется 3 функции: f, g и h. При использовании compose:
compose(f, g, h)
        ←  ←  ←
Порядок выполнения функций будет таким h, g и далее f (справа налево). И выходные данные будут передаваться в следующую функцию. При использовании pipe:
pipe(f, g, h)
     →  →  →
Порядок выполнения функций будет таким f, g и далее h (слева направо). И выходные данные будут передаваться в следующую функцию.

Какую функцию использовать?

compose и pipe не сильно отличаются друг от друга. Они решают одну и ту же задачу. compose ближе к математической нотации (f ∘ g)(x) = f(g(x)). С pipe визуально легче воспринимать порядок выполнения функций.

Реальный пример

В следующих примерах будем использовать pipe. Предположим, нужно сделать простой калькулятор цен, в котором нужно применить:
  • налог (30%, по умолчанию),
  • сервисный сбор (10у.е., по умолчанию),
  • скидку,
  • купон,
  • цену доставки на основе веса.
API калькулятора цен на основе этих требований будет выглядеть следующим образом:
const priceCalculator = (
  taxPercentage = 0.3,
  serviceFees = 10,
  price,
  discount,
  percentCoupon,
  weight,
  shippingPricePerKg
) => {
  // реализация
}

Реализация без композиции

const priceCalculator = (
  taxPercentage = 0.3,
  serviceFees = 10,
  price,
  discount,
  percentCoupon,
  weight,
  shippingPricePerKg
) => {
  return (
    price
     - (price * percentCoupon)
     - discount
     + (weight * shippingPricePerKg)
     + serviceFees
  ) * (1 + taxPercentage)
}
Эта функция выполняет свою задачу, но ее сложно читать, тестировать и отлаживать.

Реализация с композицией

const priceCalculator = (
  taxPercentage = 0.3,
  serviceFees = 10,
  price,
  discount,
  percentCoupon,
  weight,
  shippingPricePerKg
) => {
 const applyTax = (val) => val * (1 + taxPercentage)
 const applyServiceFees = (val) => val + serviceFees
 const applyPercentCoupon = (val) => val - val * percentCoupon
 const applyDiscount = (val) => val - discount
 const applyShippingCost = (val) => val + weight * shippingPricePerKg

 return pipe(
   applyPercentCoupon,
   applyDiscount,
   applyShippingCost,
   applyServiceFees,
   applyTax
 )(price)
}
Эта реализация выглядит более чистой, ее легко тестировать и отлаживать. Все это благодаря модульности.

Запуск примера

Запустим, передав только price. Очевидно, получим неверный результат, т.к. передали не все обязательные параметры.
priceCalculator(10) // NaN
Сначала продебажим. Для дебага pipe и compose можно добавить удобную функцию inspect. Она просто логирует в консоль входные данные и возвращает эти данные без изменений.
const inspect = (label) => (x) => {
  console.log(`${label}: ${x}`)
  return x
}
Добавим inspect в цепочку выполнения.
const priceCalculator = (
  taxPercentage = 0.3,
  serviceFees = 10,
  price,
  discount,
  percentCoupon,
  weight,
  shippingPricePerKg
) => {
  const applyTax = (val) => val * (1 + taxPercentage)
  const applyServiceFees = (val) => val + serviceFees
  const applyPercentCoupon = (val) => val - val * percentCoupon
  const applyDiscount = (val) => val - discount
  const applyShippingCost = (val) => val + weight * shippingPricePerKg

  return pipe(
    inspect('price'),
    applyPercentCoupon,
    inspect('after applyPercentCoupon'),
    applyDiscount,
    inspect('after applyDiscount'),
    applyShippingCost,
    inspect('after applyShippingCost'),
    applyServiceFees,
    inspect('after applyServiceFees'),
    applyTax
  )(price)
}
Результат будет примерно таким:
priceCalculator(10)
// price: undefined
// after applyPercentCoupon: NaN
// ...
Видим, price - undefined. Это произошло потому что price - третий аргумент, а мы передаем его первым.

Быстрый фикс

Сделаем так, чтобы функция принимала один объект:
const priceCalculator = ({
  taxPercentage = 0.3,
  serviceFees = 10,
  price,
  discount,
  percentCoupon,
  weight,
  shippingPricePerKg
}) => {
  // ...
}
Далее, используем:
priceCalculator({ price: 10 })
 
// price: 10
// after applyPercentCoupon: NaN
// ...
Все еще получаем NaN, в этот раз потому что не был передан percentCoupon и он имеет значение undefined.
Добавим для всех параметров, кроме price, значения по умолчанию.
const priceCalculator = ({
  taxPercentage = 0.3,
  serviceFees = 10,
  price,
  discount = 0,
  percentCoupon = 0,
  weight = 0,
  shippingPricePerKg = 0
}) => {
  // ...
}
Если запустить заново, получим результат:
priceCalculator({ price: 10 }) // 26
Это пример того как композиция позволяет нам тестировать и исправлять код проще и быстрее, просто проверяя области, которые вызывают подозрения. Проблема, которую мы отлаживали, была очень простой. Когда мы переходим к более масштабным модулям, все становится еще более трудным для проверки. Большие атомарные функции трудно поддерживать. Разделение функций на более мелкие упрощает отладку, тестирование, поддержку и разработку функций.

Для чего нужна композиция?

Композиция это объединение меньших модулей в более крупные. Если мы думаем оперируем модулями (что обеспечивается композицией), мы улучшаем:
  • модульное мышление,
  • тестируемость,
  • возможность отладки,
  • поддерживаемость.

Итоги

Композиция — это способ построения больших модулей из более мелких, что делает наш код более модульным. Таким образом, проще отлаживать, тестировать, поддерживать, повторно использовать и интереснее разрабатывать функции.