Продвинутые стратегии при работе с React и TypeScript

2 года назад·10 мин. на чтение

Создание и обслуживание сложных приложений React и TypeScript требует надежной стратегии. В этой статье мы рассмотрим продвинутые стратегии разработки приложений React и TypeScript, включая архитектуру, тестирование, производительность, процесс разработки, специальные возможности, безопасность и поддержку.

React и TypeScript являются двумя наиболее популярными технологиями, используемыми в современной веб-разработке. Компонентная архитектура React и виртуальный DOM в сочетании с мощной типизацией и удобством сопровождения TypeScript создают мощный дуэт.

Архитектура

Хорошо спроектированная архитектура необходима для создания масштабируемых, поддерживаемых и расширяемых приложений. Продуманная архитектурная стратегия может гарантировать, что ваше приложение остается управляемым по мере его роста и развития с течением времени. Существует несколько архитектурных шаблонов, доступных для приложений React, таких как Flux, Redux и Context API. Каждый шаблон имеет свои сильные и слабые стороны, и выбор будет зависеть от требований вашего приложения и предпочтений вашей команды. При создании приложения TypeScript важно выбрать архитектуру, которая хорошо работает с дополнительным уровнем сложности TypeScript. Многоуровневая архитектура, такая как Domain-Driven Design, может помочь управлять сложностью и обеспечивать разделение задач. Кроме того, модульная архитектура, такая как Micro Frontends, может помочь разбить большие приложения на более мелкие, более управляемые части. Другая архитектурная стратегия заключается в использовании компонентов-контейнеров и презентационных компонентов. Компоненты-контейнеры отвечают за управление состоянием приложения и потоком данных, в то время как презентационные компоненты связаны с отображением пользовательского интерфейса. Такой подход помогает обеспечить разделение задач и упорядочить кодовую базу.
Давайте подробнее рассмотрим пример архитектуры приложения React и TypeScript.
// App.tsx
import React from 'react';
import { BrowserRouter as Router, Switch, Route } from 'react-router-dom';
import { Provider } from 'react-redux';
import store from './store';
import Header from './components/Header';
import Footer from './components/Footer';
import Home from './pages/Home';
import About from './pages/About';
import Contact from './pages/Contact';
import NotFound from './pages/NotFound';

function App() {
  return (
    <Provider store={store}>
      <Router>
        <Header />
        <Switch>
          <Route exact path="/" component={Home} />
          <Route exact path="/about" component={About} />
          <Route exact path="/contact" component={Contact} />
          <Route component={NotFound} />
        </Switch>
        <Footer />
      </Router>
    </Provider>
  );
}
export default App;
В этом примере архитектуры у нас есть компонент контейнера App, который управляет состоянием приложения и потоком данных. Мы используем React Router для управления маршрутизацией приложения и рендеринга различных страниц на основе URL- адреса. Компонент контейнера также заключает все приложение в Provider Redux, который предоставляет доступ к глобальному состоянию приложения. Презентационные компоненты, Header и Footer, связаны с отображением пользовательского интерфейса и получением пропса от компонента контейнера.

Тестирование

Тестирование имеет решающее значение для обеспечения того, чтобы ваш код работал так, как задумано, выявляя ошибки до того, как они попадут в продакшен. Эффективное тестирование требует комплексной стратегии, охватывающей все аспекты приложения, от модульных тестов до интеграционных тестов и end-to-end тестов. Существует несколько фреймворков тестирования и инструментов, доступных для React и TypeScript, таких как Jest, Enzyme и React Testing Library. При тестировании приложений TypeScript важно убедиться, что тесты правильно типизируют код и обнаруживают ошибки, связанные с типами. Модульные тесты должны быть написаны для охвата отдельных функций или компонентов, в то время как интеграционные тесты должны проверять, как различные части приложения работают вместе. End-to-end (e2e) тесты должны имитировать реальные пользовательские сценарии и охватывать все аспекты приложения. Давайте подробнее рассмотрим пример стратегии тестирования для приложения React и TypeScript.
// Example.test.tsx

import React from 'react';
import { render, screen } from '@testing-library/react';
import { Provider } from 'react-redux';
import store from './store';
import Example from './Example';

describe('Example component', () => {
  it('renders correctly', () => {
    render(
      <Provider store={store}>
        <Example />
      </Provider>
    );
    const linkElement = screen.getByText(/Example Component/i);
    expect(linkElement).toBeInTheDocument();
  });
});
В этом примере стратегии тестирования мы используем платформы Jest и React Testing Library для написания модульного теста для компонента Example. Компонент заключен в провайдер Redux Provider, который предоставляет доступ к глобальному состоянию приложения. Функция render используется для рендеринга компонента и предоставления его для тестирования. screen - объект из библиотеки React Testing Library используется для поиска элемента с текстом Example Component. Наконец, функция expect используется для обеспечения того, чтобы элемент находился в документе.

Производительность

Производительность имеет решающее значение для обеспечения быстрого и отзывчивого взаимодействия с пользователем, особенно для более крупных и сложных приложений. Оптимизация производительности должна быть включена в вашу стратегию развития с самого начала. Для React и TypeScript доступно несколько методов оптимизации производительности, таких как отложенная загрузка (ленивая загрузка, lazy loading), разделение кода и мемоизация. При оптимизации производительности приложения TypeScript важно убедиться, что TypeScript используется эффективным и оптимизированным образом. Кроме того, следует проводить регулярное тестирование производительности и профилирование, чтобы убедиться, что оптимизация повышает производительность. Давайте подробнее рассмотрим пример метода оптимизации производительности для приложений React и TypeScript.
// LazyLoadedComponent.tsx

import React, { lazy, Suspense } from 'react';

const LazyLoadedComponent = lazy(() => import('./LazyLoadedComponentImpl'));
function LazyLoadedComponentWrapper() {
  return (
    <Suspense fallback={<div>Loading...</div>}>
      <LazyLoadedComponent />
    </Suspense>
  );
}
export default LazyLoadedComponentWrapper;
В этом примере метода оптимизации производительности мы используем функцию React lazy для ленивой загрузки компонента. Функция lazy принимает функцию, которая возвращает динамический импорт, позволяя загружать компонент только при необходимости. Компонент Suspense используется для предоставления резервного пользовательского интерфейса во время загрузки компонента. Этот метод может помочь улучшить начальное время загрузки приложения за счет уменьшения объема кода, который необходимо загрузить и проанализировать.

Процесс разработки

Эффективный и оптимизированный процесс разработки может помочь вам писать лучший код быстрее и эффективнее. Такие инструменты, как webpack, Babel и ESLint, могут помочь оптимизировать процесс разработки, а системы управления версиями, такие как Git, могут помочь управлять кодом и эффективно взаимодействовать с вашей командой. Гибкие методологии разработки, такие как Scrum, могут помочь оптимизировать процесс разработки, способствовать сотрудничеству и общению, а также более эффективно предоставлять высококачественное программное обеспечение. Регулярные проверки кода и сеансы обмена знаниями также могут помочь поддерживать качество кода и гарантировать, что все члены команды будут в курсе последних разработок. Другим аспектом оптимизированного процесса разработки является автоматизация. Автоматизация повторяющихся задач, таких как построение и развертывание приложения, может помочь сэкономить время и уменьшить количество ошибок. Конвейеры непрерывной интеграции и непрерывной доставки (CI/CD) помогают автоматизировать процесс разработки, позволяя сосредоточиться на написании кода и предоставлении функций.
Давайте подробнее рассмотрим пример процесса разработки для приложения React и TypeScript.
// package.json
{
  "name": "my-app",
  "version": "1.0.0",
  "scripts": {
    "start": "webpack-dev-server --mode development",
    "build": "webpack -mode production",
    "test": "jest",
    "lint": "eslint src",
    "precommit": "lint-staged",
    "deploy": "npm run build && aws s3 sync dist s3://my-bucket -delete"
  },
  "devDependencies": {
    "webpack": "5.64.4",
    "webpack-cli": "4.9.1",
    "webpack-dev-server": "4.6.0",
    "babel-loader": "8.2.3",
    "@babel/core": "7.16.7",
    "@babel/preset-env": "7.16.8",
    "@babel/preset-react": "7.16.7",
    "@babel/preset-typescript": "7.16.7",
    "eslint": "8.6.0",
    "eslint-plugin-react": "7.29.0",
    "eslint-plugin-react-hooks": "4.3.0",
    "jest": "27.4.3",
    "ts-jest": "27.0.5",
    "lint-staged": "12.2.4",
    "husky": "7.0.4"
  },
  "dependencies": {
    "react": "17.0.2",
    "react-dom": "17.0.2",
    "react-redux": "7.2.6",
    "react-router-dom": "6.2.1",
    "redux": "4.1.2",
    "axios": "0.24.0"
  },
  "lint-staged": {
    "*.{js,jsx,ts,tsx}": [
      "eslint --fix",
      "git add"
    ]
  }
}
В этом примере процесса разработки мы используем webpack для объединения нашего кода и Babel для преобразования нашего кода TypeScript в JavaScript. Мы используем Jest для выполнения наших тестов и ESLint для линтинга нашего кода. Скрипт precommit использует lint-staged для запуска ESLint и форматирования нашего кода перед каждым коммитом. Наконец, скрипт deploy создает наше приложение и развертывает его в бакете AWS S3.

Специальные возможности и доступность (Accessibility)

Специальные возможности имеют решающее значение для обеспечения того, чтобы все пользователи, независимо от их возможностей, могли получить доступ к приложению и использовать его. Следует следовать рекомендациям и стандартам по специальным возможностям, таким как Руководство по доступности веб (WCAG), чтобы обеспечить доступность приложения для всех. При разработке приложений React и TypeScript специальные возможности должны быть включены в процесс разработки с самого начала. Такие инструменты, как axe-core, можно использовать для проверки проблем со специальными возможностями и обеспечения соответствия приложения рекомендациям по специальным возможностям. Кроме того, использование семантического HTML и предоставление альтернативного текста для изображений может помочь улучшить специальные возможности вашего приложения. Давайте подробнее рассмотрим пример метода специальных возможностей для приложения React и TypeScript.
// AccessibleButton.tsx

import React, { ButtonHTMLAttributes } from 'react';
interface AccessibleButtonProps extends ButtonHTMLAttributes<HTMLButtonElement> {
  label: string;
}
function AccessibleButton({ label, ...rest }: AccessibleButtonProps) {
  return (
    <button aria-label={label} {...rest}>
      {label}
    </button>
  );
}
export default AccessibleButton;
В этом примере метода специальных возможностей мы используем атрибут aria-label для предоставления метки со специальными возможностями для кнопки. Компонент AccessibleButton принимает проп label и отображает кнопку с атрибутом aria-label. Такой подход гарантирует, что кнопка будет доступна всем пользователям, включая пользователей, использующих программы чтения с экрана.

Безопасность

Безопасность является еще одним важным аспектом продвинутой разработки React и TypeScript. Уязвимости безопасности могут иметь серьезные последствия, начиная от утечек данных и заканчивая простоями приложений. Существует несколько рекомендаций по безопасности, которые следует соблюдать при разработке приложений React и TypeScript, такие как методы безопасного кодирования, валидация ввода и использование HTTPS. При разработке приложений TypeScript важно убедиться, что ваш код написан с учетом безопасности. Распространенные уязвимости системы безопасности, такие как внедрение кода SQL и межсайтовые скрипты (XSS), можно предотвратить с помощью параметризованных запросов и санитизации пользовательского ввода. Кроме того, использование HTTPS может помочь обеспечить шифрование данных при передаче и предотвратить атаки типа man-in-the-middle.
Давайте подробнее рассмотрим пример техники безопасности для приложения React и TypeScript.
// SecureForm.tsx
import React, { useState } from 'react';
import axios from 'axios';

function SecureForm() {
  const [name, setName] = useState('');
  const [email, setEmail] = useState('');
  const handleSubmit = async (event: React.FormEvent<HTMLFormElement>) => {
    event.preventDefault();
    try {
      await axios.post('/api/submit-form', { name, email });
      alert('Form submitted successfully!');
    } catch (error) {
      alert('Error submitting form. Please try again.');
    }
  };
  return (
    <form onSubmit={handleSubmit}>
      <label>
        Name:
        <input
          type="text"
          value={name}
          onChange={(event) => setName(event.target.value)}
        />
      </label>
      <label>
        Email:
        <input
          type="email"
          value={email}
          onChange={(event) => setEmail(event.target.value)}
        />
      </label>
      <button type="submit">Submit</button>
    </form>
  );
}
export default SecureForm;
В этом примере техники безопасности мы используем методы безопасного кодирования и проверки ввода для предотвращения уязвимостей безопасности. Функция handleSubmit очищает и проверяет введенные пользователем данные перед отправкой на сервер. Кроме того, форма отправляется с использованием безопасного протокола HTTPS, чтобы обеспечить шифрование данных при передаче.

Обслуживание и поддержка

Обслуживание большого и сложного приложения React и TypeScript может быть сложной задачей, требующей надежной стратегии обслуживания. Хорошая стратегия обслуживания должна включать регулярные проверки кода, рефакторинг и обновление зависимостей. Проверки кода необходимы для поддержания качества кода и обеспечения соответствия кода стандартам вашей команды. Рефакторинг может помочь улучшить структуру и удобство сопровождения кода, упрощая его изменение и обновление в будущем. Обновление зависимостей может помочь гарантировать, что приложение использует последние и наиболее безопасные версии сторонних библиотек и платформ. Давайте подробнее рассмотрим пример стратегии обслуживания приложений React и TypeScript.
// ExampleComponent.tsx

import React from 'react';
import PropTypes from 'prop-types';

interface ExampleComponentProps {
  text: string;
}
function ExampleComponent({ text }: ExampleComponentProps) {
  return <div>{text}</div>;
}
ExampleComponent.propTypes = {
  text: PropTypes.string.isRequired,
};
export default ExampleComponent;
В этом примере стратегии обслуживания мы используем propTypes для документирования пропса, который ожидает наш компонент. Эта документация может помочь гарантировать, что наш код остается согласованным и поддерживаемым с течением времени. Кроме того, регулярные проверки и рефакторинг кода могут помочь сохранить качество кода и гарантировать, что код соответствует стандартам нашей команды.
Создание и поддержка продвинутых приложений React и TypeScript требует надежной стратегии. Хорошо продуманная архитектура, комплексное тестирование, оптимизация производительности, эффективный процесс разработки, доступность, безопасность и стратегия обслуживания — все это важные компоненты успешной стратегии развития. Следуя этим стратегиям, вы можете гарантировать, что ваше приложение является масштабируемым, обслуживаемым и эффективным, обеспечивая высококачественный пользовательский интерфейс для ваших пользователей. В дополнение к стратегиям, рассмотренным выше, существует множество других продвинутых методов и шаблонов React и TypeScript, которые могут помочь вам создавать лучшие приложения. Некоторые примеры этих методов включают компоненты высшего порядка, render props и контекст. Компоненты высшего порядка (HOC) являются популярным шаблоном в React, который может помочь вам повторно использовать и совместно использовать логику между компонентами. HOC — это функции, которые принимают компонент и возвращают новый компонент с дополнительной функциональностью. Например, можно использовать HOC для добавления проверки подлинности или авторизации компонента. renderProps — еще один популярный шаблон в React, который может помочь вам повторно использовать логику между компонентами. Render props — это функции, которые передаются компоненту в качестве пропса, позволяя компоненту отображать динамическое содержимое. Например, можно использовать рендер проп для рендеринга загружаемого спиннера во время извлечения данных. Контекст — это функциональность в React, которая позволяет передавать данные через дерево компонентов без необходимости вручную передавать проп на каждом уровне. Контекст может быть полезен для передачи данных, таких как тема или предпочитаемый язык, компонентам, которые находятся глубоко в дереве компонентов.
Давайте подробнее рассмотрим пример реализации каждого из этих передовых методов.
// withAuthentication.tsx
import React, { ComponentType } from 'react';

function withAuthentication<T>(WrappedComponent: ComponentType<T>) {
  return function WithAuthentication(props: T) {
    const isAuthenticated = true; // replace with actual authentication logic
    return isAuthenticated ? (
      <WrappedComponent {...props} />
    ) : (
      <div>You must be logged in to view this content.</div>
    );
  };
}
export default withAuthentication;
В этом примере реализации HOC мы используем функцию withAuthentication для добавления проверки подлинности к компоненту. Функция withAuthentication принимает компонент и возвращает новый компонент с дополнительной логикой проверки подлинности. Новый компонент отображает упакованный компонент, если пользователь прошел проверку подлинности, или сообщение о том, что пользователь должен войти в систему в противном случае.
// FetchData.tsx

import React, { useState, useEffect } from 'react';

interface FetchDataProps {
  url: string;
  render: (data: any) => React.ReactNode;
}
function FetchData({ url, render }: FetchDataProps) {
  const [data, setData] = useState(null);
  const [isLoading, setIsLoading] = useState(false);
  const [error, setError] = useState(null);
  useEffect(() => {
    setIsLoading(true);
    fetch(url)
      .then((response) => response.json())
      .then((data) => {
        setData(data);
        setIsLoading(false);
      })
      .catch((error) => {
        setError(error);
        setIsLoading(false);
      });
  }, [url]);
  if (isLoading) {
    return <div>Loading...</div>;
  }
  if (error) {
    return <div>{error.message}</div>;
  }
  return <>{render(data)}</>;
}
export default FetchData;
В этом примере реализации рендер пропса мы используем компонент FetchData для извлечения данных из API и их рендеринга с помощью рендер пропса. Компонент FetchData принимает url, который указывает конечную точку API для извлечения, и render prop который является функцией, которая принимает извлеченные данные и возвращает JSX для рендеринга.
// ThemeContext.tsx
import React from 'react';

export const ThemeContext = React.createContext('light');
export const ThemeProvider = ({ children }: { children: React.ReactNode }) => (
  <ThemeContext.Provider value="dark">{children}</ThemeContext.Provider>
);
В этом примере реализации контекста мы используем ThemeContext для предоставления темы нашему приложению. ThemeContext создается с помощью функции createContext, которая создает новый объект контекста. Компонент ThemeProvider используется для предоставления ThemeContext нашему приложению. ThemeProvider принимает проп children, который представляет собой дерево компонентов, которое должно быть обернуто контекстом темы.
В дополнение к этим передовым методам существует множество других инструментов и библиотек, которые могут помочь вам создавать лучшие приложения React и TypeScript. Вот некоторые примеры этих инструментов:
  • Redux: предсказуемый контейнер состояния для JavaScript приложений.
  • React Router: библиотека для маршрутизации в приложениях React.
  • Styled Components: библиотека для стилизации компонентов React с помощью CSS-in-JS.
  • Formik: библиотека для построения форм в React.
  • Storybook: инструмент для изолированного построения компонентов пользовательского интерфейса.
Используя эти средства и следуя передовым методам и стратегиям React и TypeScript, вы можете создавать лучшие, более масштабируемые и более удобные в обслуживании приложения.

Итоги

Разработка продвинутых приложений на React и TypeScript требует надежной стратегии, которая включает в себя хорошо продуманную архитектуру, всестороннее тестирование, оптимизацию производительности, эффективный процесс разработки, доступность, безопасность и стратегию обслуживания. Следуя этим стратегиям и методам, вы можете создавать лучшие приложения, которые обеспечивают высококачественный пользовательский интерфейс для ваших пользователей. В этой статье мы рассмотрели многие передовые методы и стратегии React и TypeScript, в том числе:
  • Архитектура и состав компонентов
  • Комплексное тестирование
  • Оптимизация производительности
  • Эффективный процесс разработки
  • Доступность
  • Безопасность
  • Поддержка
Кроме того, мы рассмотрели некоторые продвинутые методы React и TypeScript, такие как компоненты высшего порядка, renderProps и контекст, а также некоторые инструменты и библиотеки, которые могут помочь вам создавать лучшие приложения. Внедряя эти методы и стратегии в процесс разработки React и TypeScript, вы можете создавать лучшие приложения, которые являются масштабируемыми, обслуживаемыми и эффективными, обеспечивая высококачественный пользовательский интерфейс для ваших пользователей.

Что такое JSX в React

2 года назад·2 мин. на чтение

Новички в React, вероятно, путаются в том, почему мы пишем HTML внутри JavaScript.

React без JSX

Давайте напишем React код без использования JSX, чтобы мы могли лучше знать, почему мы используем JSX в React.
let h1 = React.createElement('h1',{style:{color:"green"}}," h1 element");
let p = React.createElement('p',{style:{color:"red"}},"p element");
let div = React.createElement('div',{className:"container"},h1,p);

ReactDOM.render(div,document.querySelector('#app'))
React.createElement(type,props,children) принимает три аргумента. type: Это означает тип HTML-элемента, который нам нужен. (Пример: h1, h2, p, div и т.д.) props: Любые пропсы, необходимые для этого элемента. children: Данные, которые нам нужно добавить внутрь элемента html (пример: обычный текст или дочерние элементы)

React с JSX

Теперь заменим приведенный выше код на код с JSX.
let  green = {color:"green"};
let red = {color:"red"};

let h1 = <h1 style ={green}>h1 element</h1>;
let p = <p style={red}>p element</p>;
let div = <div className="container">{h1}{p}</div>

ReactDOM.render(div,document.querySelector('#app'))
JSX, который мы пишем внутри React, часто преобразуется в JavaScript с помощью транспилятора babel.

Что такое JSX?

JSX позволяет нам писать HTML-синтаксис внутри JavaScript. Используя JSX, мы можем сделать наш код более читабельным. JSX используется не только в React, но и в некоторых других фреймворках.

Выражения в JSX

В JSX мы можем встраивать выражения JavaScript, обернув фигурными скобками { }.
let h1 = <h1> Odd number {2+3}</h1>
let users = ['user1', 'user2', 'user3']

let ul = (
  <ul>
    {users.map((user,i)=>(
      <li>{user}</li>
    ))}
  </ul>
)
В приведенном выше коде мы использовали метод map для перебора массива и создали три элемента li.

Атрибуты в JSX

Встроенные (инлайновые) стили

// объект
let greenColor = {color: "green"}

let h1 = <h1 style={greenColor}>This is heading</h1>
Для встроенного стиля нам нужно передать свойства стиля как объект внутри фигурных скобок, так как объект является выражением JavaScript. Мы также можем передать объект стиля непосредственно в фигурные скобки вместо использования дополнительной переменной.
let h1 = <h1 style={{color:"green"}}>This is heading</h1>

Внешние стили, использующие classNames

Нам нужно использовать className вместо обычного атрибута class, который мы используем в HTML, потому что внутри JavaScript уже присутствует ключевое слово class.
let h1 = <h1 className="header-h1">This is heading</h1>

Компоненты React

Компонент представляет собой многократно используемый фрагмент кода в React, который возвращает React элемент.
function Button(props){
    return <button>{props.name}</button>
}

Условные выражения в JSX

function ShowHide(props) {
  if(props.show) {
    return <button>Show</button>
  } else {
    return <button>Hide</button>
  }
}

ReactDOM.render(<ShowHide show="true" />,document.querySelector('#app'))
Мы можем упростить приведенный выше код, используя тернарный оператор.
function ShowHide(props){
  return <button>{props.show ? "Show" : "Hide"}</button>
}

Оператор spread в JSX

Предположим, нам нужно передать данные компоненту User с помощью пропсов.
function User(props) {
  return (
    <div>
      <h1>{props.name}</h1>
      <ul>
        <li>{props.email}</li>
        <li>{props.mobile }</li>
      </ul>
    </div>
  )
}

<User name="John" email="user@example.com" mobile={11233} />
Передадим те же пропсы с помощью оператора spread.
let user = {
  name: "John",
  email: "user@example.com",
  mobile: 11233
}

<User {...user} />