Типы TypeScript для повседневного использования

год назад·14 мин. на чтение

Туториал по TypeScript - Типы TypeScript, которые используются наиболее часто

Содержание туториала по TypeScript В этой главе мы рассмотрим некоторые из наиболее распространенных типов, которые вы найдете в JavaScript коде, и объясним соответствующие способы описания этих типов в TypeScript. Это не исчерпывающий список, и в следующих главах будут описаны другие способы именования и использования других типов. Кроме того, типы могут появляться не только в аннотациях, но и во многих других местах. Когда мы узнаем о самих типах, мы также узнаем о местах, где мы можем ссылаться на эти типы для формирования новых конструкций. Мы начнем с обзора самых основных и распространенных типов, с которыми вы можете столкнуться при написании кода JavaScript или TypeScript. Позже они сформируют основные строительные блоки для более сложных типов.

Примитивы: string, number, boolean

В JavaScript есть три очень часто используемых примитива: string, number и boolean. У каждого есть соответствующий тип в TypeScript. Как и следовало ожидать, это те же самые имена, которые вы увидели бы, если бы использовали оператор JavaScript typeof для значений этих типов:
  • string представляет строковые значения, такие как "Hello, world"
  • number для чисел вроде 42. В JavaScript нет различий между целочисленными значениями и значениями с плавающей точкой, поэтому нет эквивалента int или float — все просто number
  • boolean для двух значений true и false
Типы String, Number и Boolean (начинающиеся с заглавных букв) допустимы, но относятся к некоторым специальным встроенным типам, которые очень редко встречаются в коде. Всегда используйте типы string, number или boolean.

Массивы

Чтобы указать тип массива, например [1, 2, 3], вы можете использовать синтаксис number[]; этот синтаксис работает для любого типа (например, string[] — это массив строк и т.д.). Вы также можете встретить синтаксис Array<number>, что означает то же самое. Мы узнаем больше о синтаксисе T<U>, когда будем рассматривать дженерики (generics). Обратите внимание, что [number] — означает другой тип, а именно кортеж (tuple).

any

TypeScript также имеет специальный тип any, который вы можете использовать всякий раз, когда вы не хотите, чтобы определенное значение вызывало ошибки проверки типов. Когда значение имеет тип any, вы можете получить доступ к любым его свойствам (которые, в свою очередь, будут иметь тип any), вызвать его как функцию, присвоить ему значения любого типа или почти все что угодно. Это валидный синтаксис:
let obj: any = { x: 0 };
// Ни одна из следующих строк кода не вызовет ошибок компилятора.
// Использование any отключает все дальнейшие проверки типов и предполагается, что
// вы знаете эти сценарии лучше, чем TypeScript.
obj.foo();
obj();
obj.bar = 100;
obj = 'hello';
const n: number = obj;
Тип any полезен, когда вы не хотите записывать длинный тип только для того, чтобы убедить TypeScript в том, что конкретная строка кода в порядке.

noImplicitAny

Когда вы не указываете тип и TypeScript не может вывести его из контекста, компилятор обычно по умолчанию использует тип any. Обычно этого следует избегать, потому что тип any не проверяется. Используйте флаг компилятора noImplicitAny, чтобы пометить любое неявное значение any как ошибку.

Аннотации типов переменных

Когда вы объявляете переменную с помощью const, var или let, вы можете дополнительно добавить аннотацию типа, чтобы явно указать тип переменной:
let myName: string = 'Alice';
TypeScript не использует объявления в стиле «типы слева», такие как int x = 0; Аннотации типа всегда будут находится после. Однако в большинстве случаев в этом нет необходимости. Везде, где это возможно, TypeScript пытается автоматически определить типы в вашем коде. Например, тип переменной выводится на основе типа ее инициализатора:
// Аннотации типа не требуются — тип 'myName' выводится как 'string'
let myName = 'Alice';
По большей части вам не нужно явно изучать правила вывода. Если вы только начинаете, попробуйте использовать меньше аннотаций типов — вы удивитесь, как мало нужно для TypeScript, чтобы он понимал, что происходит.

Функции

Функции — это основное средство для работы с данными в JavaScript. TypeScript позволяет указывать типы как входных, так и выходных значений функций.

Аннотации типов параметров

Когда вы объявляете функцию, вы можете добавить аннотации типа после каждого параметра, чтобы объявить, какие типы параметров принимает функция. Аннотации типа параметра идут после имени параметра:
// Аннотация типа параметра
function greet(name: string) {
  console.log('Hello, ' + name.toUpperCase() + '!!');
}
Когда параметр имеет аннотацию типа, будут проверены аргументы этой функции:
// При вызове возникнет ошибка времени выполнения
greet(42);

// Argument of type 'number' is not assignable to parameter of type 'string'.
Даже если вы не указали аннотации типов для параметров, TypeScript все равно проверит, что вы передали правильное количество аргументов.

Аннотации типа возвращаемого значения

Вы также можете добавить аннотации типа возвращаемого значения. Аннотации типа возвращаемого значения добавляется после списка параметров:
function getFavoriteNumber(): number {
  return 26;
}
Подобно аннотациям типа переменной, вам обычно не нужна аннотация типа возвращаемого значения, потому что TypeScript будет делать вывод о типе возвращаемого значения функции на основе ее оператора return. Аннотация типа в приведенном выше примере ничего не меняет. Некоторые кодовые базы явно указывают тип возвращаемого значения для документирования, для предотвращения случайных изменений или просто для личных предпочтений.

Анонимные функции

Анонимные функции немного отличаются от объявлений обычных функций. Когда функция появляется в месте, где TypeScript может определить, как она будет вызываться, параметрам этой функции автоматически присваиваются типы. Например:
// Здесь нет аннотаций типов, но TypeScript может обнаружить ошибку
const names = ['Alice', 'Bob', 'Eve'];

// Определение типа на основе контекста
names.forEach(function (s) {
  console.log(s.toUppercase());

  // Property 'toUppercase' does not exist on type 'string'. Did you mean 'toUpperCase'?
});

// Определение типа на основе контекста вызова функции также работает и для стрелочных функций
names.forEach((s) => {
  console.log(s.toUppercase());

  // Property 'toUppercase' does not exist on type 'string'. Did you mean 'toUpperCase'?
});
Несмотря на то, что у параметра s не было аннотации типа, TypeScript использовал типы функции forEach вместе с предполагаемым типом массива, чтобы определить тип, который будет иметь s. Этот процесс называется контекстной типизацией, потому что контекст, в котором возникла функция, сообщает, какой тип она должна иметь. Как и в случае с правилами вывода, вам не нужно явно знать, как это происходит, но понимание того, что это действительно происходит, может помочь вам заметить, когда аннотации типов не нужны. Позже мы увидим больше примеров того, как контекст, в котором встречается значение, может повлиять на его тип.

Типы объектов

Помимо примитивов, наиболее распространенным типом, с которым вы столкнетесь, является объект. Это относится к любому значению JavaScript со свойствами. Чтобы определить тип объекта, мы просто перечисляем его свойства и их типы. Например, вот функция, которая принимает объект точку:
// Аннотация типа параметра является типом объекта
function printCoord(pt: { x: number; y: number }) {
  console.log("The coordinate's x value is " + pt.x);
  console.log("The coordinate's y value is " + pt.y);
}
printCoord({ x: 3, y: 7 });
Здесь мы типизировали параметр двумя свойствами — x и y — оба типа number. Вы можете использовать , или ; для разделения свойств, а последний разделитель необязателен. Указание типа каждого свойства также необязательно. Если вы не укажете тип, он будет считаться any.

Необязательные свойства

Типы объектов также могут указывать, что некоторые или все их свойства являются необязательными. Для этого добавьте ? после имени свойства:
function printName(obj: { first: string; last?: string }) {
  // ...
}
// Следующие вызовы не вызовут ошибок
printName({ first: 'Bob' });
printName({ first: 'Alice', last: 'Alisson' });
В JavaScript, если вы обращаетесь к несуществующему свойству, вы получите значение undefined, а не ошибку времени выполнения. Из-за этого, когда вы читаете из необязательного свойства, вам придется проверять его на undefined перед его использованием.
function printName(obj: { first: string; last?: string }) {
  // Ошибка, если obj.last не предоставлен:
  console.log(obj.last.toUpperCase());
Object is possibly 'undefined'.
  if (obj.last !== undefined) {
    // OK
    console.log(obj.last.toUpperCase());
  }

  // Безопасная альтернатива с использованием современного синтаксиса JavaScript:
  console.log(obj.last?.toUpperCase());
}

Объединение типов (Unions)

Система типов TypeScript позволяет вам создавать новые типы из существующих, используя большое количество операторов. Теперь, когда мы знаем, как писать несколько типов, пора начать комбинировать их интересными способами.

Определение объединенного типа

Первый способ комбинирования типов, который вы встретить - это объединение типов. Объединение типов - это тип, сформированный из двух или более других типов, представляющих значения, которые могут быть любым из этих типов. Давайте напишем функцию, которая может работать со строками или числами:
function printId(id: number | string) {
  console.log('Your ID is: ' + id);
}
// OK
printId(101);
// OK
printId('202');
// Ошибка
printId({ myID: 22342 });

// Argument of type '{ myID: number; }' is not assignable to parameter of type 'string | number'.

Работа с объединенными типами

TypeScript разрешит операцию только в том случае, если она действительна для каждого члена объединения. Например, если у вас есть объединение string | number, вы не можете использовать методы, доступные только для string:
function printId(id: number | string) {
  console.log(id.toUpperCase());

  // Property 'toUpperCase' does not exist on type 'string | number'.
  // Property 'toUpperCase' does not exist on type 'number'.
}
Решение состоит в том, чтобы сузить объединение с помощью кода, как в JavaScript без аннотаций типов. Сужение происходит, когда TypeScript может определить более конкретный тип для значения на основе структуры кода. Например, TypeScript знает, что только строковое значение будет иметь значение "string" при применении оператора typeof:
function printId(id: number | string) {
  if (typeof id === 'string') {
    // Здесь id имеет тип 'string'
    console.log(id.toUpperCase());
  } else {
    // Здесь id имеет тип 'number'
    console.log(id);
  }
}
Другой пример — использование такой функции, как Array.isArray:
function welcomePeople(x: string[] | string) {
  if (Array.isArray(x)) {
    // Здесь: 'x' это 'string[]'
    console.log('Hello, ' + x.join(' and '));
  } else {
    // Здесь: 'x' это 'string'
    console.log('Welcome lone traveler ' + x);
  }
}
Обратите внимание, что в ветке else нам не нужно делать ничего особенного — если x не является string[], то это должна быть строка. Иногда у вас будет объединение, в котором все члены имеют что-то общее. Например, и массивы, и строки имеют метод slice. Если у каждого члена объединения есть общее свойство, вы можете использовать это свойство без сужения:
// Возвращаемый тип определяется из number[] | string
function getFirstThree(x: number[] | string) {
  return x.slice(0, 3);
}
Может сбивать с толку тот факт, что объединение типов имеет пересечение свойств этих типов. Это не случайно — название union происходит из теории типов. Объединение number | string состоит из объединения значений каждого типа. Обратите внимание, что для двух множеств с соответствующими фактами о каждом множестве к объединению самих множеств применимо только пересечение этих фактов. Например, если бы у нас была комната с высокими людьми в шляпах и другая комната с говорящими по-испански в шляпах, после объединения этих комнат единственное, что мы знаем о каждом человеке, это то, что он должен быть в шляпе.

Псевдонимы типов (алиасы, aliases)

Мы использовали типы объектов и типы объединения, записывая их непосредственно в аннотациях типов. Это удобно, но часто хочется использовать один и тот же тип более одного раза и ссылаться на него по одному имени. Псевдоним типа — это именно то, что является именем для любого типа. Синтаксис псевдонима типа:
type Point = {
  x: number;
  y: number;
};

// Тоже самое как и в прошлом примере
function printCoord(pt: Point) {
  console.log("The coordinate's x value is " + pt.x);
  console.log("The coordinate's y value is " + pt.y);
}

printCoord({ x: 100, y: 100 });
Вы можете использовать псевдоним типа, чтобы дать имя любому типу, а не только объектному типу. Например, псевдоним типа может включать тип объединения:
type ID = number | string;
Обратите внимание, что псевдонимы — это всего лишь псевдонимы — вы не можете использовать псевдонимы типов для создания разных/отличных «версий» одного и того же типа. Другими словами, этот код может выглядеть недопустимым, но в соответствии с TypeScript это нормально, потому что оба типа являются псевдонимами для одного и того же типа:
type UserInputSanitizedString = string;

function sanitizeInput(str: string): UserInputSanitizedString {
  return sanitize(str);
}

// Значение типа UserInputSanitizedString
let userInput = sanitizeInput(getInput());

// может также присваивать строку
userInput = 'new input';

Интерфейсы

Объявление интерфейса — это еще один способ объявить тип объекта:
interface Point {
  x: number;
  y: number;
}

function printCoord(pt: Point) {
  console.log("The coordinate's x value is " + pt.x);
  console.log("The coordinate's y value is " + pt.y);
}

printCoord({ x: 100, y: 100 });
Точно так же, как когда мы использовали псевдоним типа выше, пример работает так же, как если бы мы использовали анонимный тип объекта. TypeScript заботится только о структуре значения, которое мы передали в printCoord, — то, что оно имеет ожидаемые свойства. Занимаясь только структурой и возможностями типов, мы называем TypeScript структурно типизированной (structurally typed) системой типов.

Различия между псевдонимами и интерфейсами

Псевдонимы типов и интерфейсы очень похожи, и во многих случаях вы можете свободно выбирать между ними. Почти все возможности интерфейса доступны в типе, ключевое отличие состоит в том, что тип нельзя повторно открыть для добавления новых свойств по сравнению с интерфейсом, который всегда расширяем. Расширение интерфейса:
interface Animal {
  name: string;
}

interface Bear extends Animal {
  honey: boolean;
}

const bear = getBear();
bear.name;
bear.honey;
Расширение типа через пересечения:
type Animal = {
  name: string;
};

type Bear = Animal & {
  honey: boolean;
};

const bear = getBear();
bear.name;
bear.honey;
Добавление новых полей в существующий интерфейс:
interface Window {
  title: string;
}

interface Window {
  ts: TypeScriptAPI;
}

const src = 'const a = "Hello World"';
window.ts.transpileModule(src, {});
Тип нельзя изменить после создания:
type Window = {
  title: string;
};

type Window = {
  ts: TypeScriptAPI;
};

// Error: Duplicate identifier 'Window'
Вы узнаете больше об этих понятиях в следующих главах, так что не беспокойтесь, если вы не сразу все поймете. По большей части вы можете выбирать на основе личных предпочтений, и TypeScript сообщит вам, нужно ли ему что-то. В общем, используйте интерфейс, пока вам не понадобятся возможности типа.

Утверждения типа (Type Assertions)

Иногда у вас будет информация о типе значения, о котором TypeScript не может узнать. Например, если вы используете document.getElementById, TypeScript знает только, что это вернет какой-то HTMLElement, но вы можете знать, что на вашей странице всегда будет HTMLCanvasElement с заданным идентификатором. В этой ситуации вы можете использовать утверждение типа, чтобы указать более конкретный тип:
const myCanvas = document.getElementById('main_canvas') as HTMLCanvasElement;
Подобно аннотации типа, утверждения типа удаляются компилятором и не влияют на поведение вашего кода во время выполнения. Вы также можете использовать синтаксис угловых скобок (кроме случаев, когда код находится в файле .tsx), что эквивалентно:
const myCanvas = <HTMLCanvasElement>document.getElementById('main_canvas');
Напоминание: поскольку утверждения типа удаляются во время компиляции, проверка во время выполнения не связана с утверждением типа. Не будет сгенерировано исключение или ноль, если утверждение типа неверно. TypeScript допускает только утверждения типа, которые преобразуются в более конкретную или менее конкретную версию типа. Это правило предотвращает «невозможные» приведения, такие как:
const x = 'hello' as number;

// Conversion of type 'string' to type 'number' may be a mistake because neither type sufficiently overlaps with the other. If this was intentional, convert the expression to 'unknown' first.
Иногда это правило может быть слишком консервативным и запрещать более сложные приведения, которые могут быть действительными. Если это произойдет, вы можете использовать два утверждения, сначала для any (или unknown, о котором мы расскажем позже), затем для нужного типа:
const a = expr as any as T;

Литеральные типы (Literal Types)

В дополнение к общим типам string и number мы можем ссылаться на определенные строки и числа в позициях типа. Один из способов подумать об этом — рассмотреть, как в JavaScript существуют различные способы объявления переменных. И var, и let позволяют изменять содержимое переменной, а const — нет. Это отражено в том, как TypeScript создает типы для литералов.
let changingString = 'Hello World';
changingString = 'Olá Mundo';
// Поскольку `changingString` может представлять любую возможную строку, именно так TypeScript описывает ее в системе типов

const constantString = 'Hello World';
// Поскольку `constantString` может представлять только 1 возможную строку, она имеет буквальное представление типа.
Сами по себе литеральные типы не очень ценны:
let x: 'hello' = 'hello';
// OK
x = 'hello';
// ...
x = 'howdy';
// Type '"howdy"' is not assignable to type '"hello"'.
Нет особого смысла иметь переменную, которая может иметь только одно значение! Но комбинируя литералы в объединения, вы можете выразить гораздо более полезную концепцию — например, функции, которые принимают только определенный набор известных значений:
function printText(s: string, alignment: 'left' | 'right' | 'center') {
  // ...
}
printText('Hello, world', 'left');
printText("G'day, mate", 'centre');

// Argument of type '"centre"' is not assignable to parameter of type '"left" | "right" | "center"'.
Типы числовых литералов работают так же:
function compare(a: string, b: string): -1 | 0 | 1 {
  return a === b ? 0 : a > b ? 1 : -1;
}
Конечно, вы можете комбинировать их с нелитеральными типами:
interface Options {
  width: number;
}
function configure(x: Options | 'auto') {
  // ...
}
configure({ width: 100 });
configure('auto');
configure('automatic');

// Argument of type '"automatic"' is not assignable to parameter of type 'Options | "auto"'.
Есть еще один вид литералов: boolean литералы. Есть только два типа логических литералов, и, как вы могли догадаться, это true и false. Сам тип boolean на самом деле является просто псевдонимом объединения true | false.

Вывод литералов

Когда вы инициализируете переменную объектом, TypeScript предполагает, что свойства этого объекта могут изменить значения позже. Например, если вы написали такой код:
const obj = { counter: 0 };
if (someCondition) {
  obj.counter = 1;
}
TypeScript не считает, что присвоение 1 полю, которое ранее имело 0, является ошибкой. Другой способ выразить тоже самое это то, что obj.counter должен иметь тип number, а не 0, потому что типы используются для определения поведения как при чтении, так и при записи. То же самое относится и к строкам:
const req = { url: 'https://example.com', method: 'GET' };
handleRequest(req.url, req.method);

// Argument of type 'string' is not assignable to parameter of type '"GET" | "POST"'.
В приведенном выше примере req.method подразумевается как строка, а не как "GET". Поскольку код можно обработать между созданием req и вызовом handleRequest, который может назначить новую строку, например "GUESS", для req.method, TypeScript считает, что этот код содержит ошибку. Есть два способа решить это.
  • Вы можете изменить вывод, добавив утверждение типа в любом месте:
// Изменение 1:
const req = { url: 'https://example.com', method: 'GET' as 'GET' };
// Изменение 2:
handleRequest(req.url, req.method as 'GET');
Изменение 1 означает: "Я говорю, что req.method всегда имеет литеральный тип "GET"", предотвращая возможное назначение "GUESS" этому полю после этого. Изменение 2 означает "Я знаю, что req.method имеет значение "GET"". Вы можете использовать as const для преобразования всего объекта в литералы типов:
const req = { url: 'https://example.com', method: 'GET' } as const;
handleRequest(req.url, req.method);
Суффикс as const действует как const, но для системы типов, гарантируя, что всем свойствам будет присвоен литеральный тип, а не более общая версия, такая как string или number.

null и undefined

В JavaScript есть два примитивных значения, которые используются для обозначения отсутствия или неинициализации значения: null и undefined. TypeScript имеет два соответствующих типа с соответствующими именами. Поведение этих типов зависит от того, включена ли у вас опция strictNullChecks.

strictNullChecks выключен

Если strictNullChecks выключен, значения, которые могут быть null или undefined, по-прежнему могут быть доступны в обычном режиме, а значения null или undefined могут быть присвоены свойству любого типа. Это похоже на то, как ведут себя языки без проверок на null (например, C#, Java). Отсутствие проверки этих значений, как правило, является основным источником ошибок; мы всегда рекомендуем включать strictNullChecks, если это целесообразно в кодовой базе.

strictNullChecks включен

При включении strictNullChecks, когда значение равно null или undefined, вам нужно будет проверить эти значения, прежде чем использовать методы или свойства для этого значения. Точно так же, как проверка на undefined перед использованием необязательного свойства, мы можем использовать сужение для проверки значений, которые могут быть null:
function doSomething(x: string | null) {
  if (x === null) {
    // do nothing
  } else {
    console.log('Hello, ' + x.toUpperCase());
  }
}

Оператор ненулевого утверждения (Non-null Assertion Operator, постфикс !)

TypeScript также имеет специальный синтаксис для удаления null и undefined из типа без какой-либо явной проверки. Добавление ! после выражения фактически является утверждением того, что значение не является null или undefined:
function liveDangerously(x?: number | null) {
  // No error
  console.log(x!.toFixed());
}
Как и другие утверждения типа, это не меняет поведение вашего кода во время выполнения, поэтому важно использовать только ! когда вы знаете, что значение не может быть null или undefined.

Перечисления (Enums)

Перечисления — это функциональность, добавленная TypeScript, которая позволяет описывать значение, которое может быть одной из множества возможных именованных констант. В отличие от большинства возможностей TypeScript, это не дополнение к JavaScript на уровне типов, а нечто, добавленное к языку и среде выполнения.

Менее распространенные примитивы

Стоит упомянуть остальные примитивы в JavaScript, представленные в системе типов.

bigint

Начиная с ES2020, в JavaScript есть примитив, используемый для очень больших целых чисел, BigInt:
// Создание значения bigint через функцию BigInt
const oneHundred: bigint = BigInt(100);

// Создание значения BigInt через литеральный синтаксис
const anotherHundred: bigint = 100n;

symbol

В JavaScript есть примитив, используемый для создания глобальной уникальной ссылки с помощью функции Symbol():
const firstName = Symbol('name');
const secondName = Symbol('name');

if (firstName === secondName) {
  /// This condition will always return 'false' since the types 'typeof firstName' and 'typeof secondName' have no overlap.
  // Can't ever happen
}

Мышление в стиле React

год назад·10 мин. на чтение

React может изменить ваше представление о разработке приложений. Когда вы создаете пользовательский интерфейс с помощью React, вы сначала разбиваете его на части, называемые компонентами. Затем вы описываете различные визуальные состояния для каждого из ваших компонентов. Наконец, вы соединяете свои компоненты вместе, чтобы данные проходили через них. В этом руководстве мы проведем вас через мыслительный процесс создания таблицы с данными о продуктах с возможностью поиска с помощью React.

Содержание туториала по React React может изменить ваше представление о разработке приложений. Когда вы создаете пользовательский интерфейс с помощью React, вы сначала разбиваете его на части, называемые компонентами. Затем вы описываете различные визуальные состояния для каждого из ваших компонентов. Наконец, вы соединяете свои компоненты вместе, чтобы данные проходили через них. В этом руководстве мы проведем вас через мыслительный процесс создания таблицы с данными о продуктах с возможностью поиска с помощью React.

Начните с макета

Представьте, что у вас уже есть JSON API и мокап от дизайнера. JSON API возвращает некоторые данные, которые выглядят следующим образом:
[
  { category: 'Fruits', price: '$1', stocked: true, name: 'Apple' },
  { category: 'Fruits', price: '$1', stocked: true, name: 'Dragonfruit' },
  { category: 'Fruits', price: '$2', stocked: false, name: 'Passionfruit' },
  { category: 'Vegetables', price: '$2', stocked: true, name: 'Spinach' },
  { category: 'Vegetables', price: '$4', stocked: false, name: 'Pumpkin' },
  { category: 'Vegetables', price: '$1', stocked: true, name: 'Peas' },
];
Чтобы реализовать пользовательский интерфейс в React, обычно выполняется одни и те же пять шагов.

Шаг 1. Разбейте пользовательский интерфейс на иерархию компонентов

Начните с рисования рамок вокруг каждого компонента и подкомпонента в макете и присваивайте им имена. Если вы работаете с дизайнером, возможно, они уже назвали эти компоненты в своем инструменте дизайна. В зависимости от вашего опыта вы можете думать о разделении дизайна на компоненты по-разному:
  • Программирование — используйте те же методы для принятия решения о создании новой функции или объекта. Одним из таких методов является принцип единой ответственности, то есть в идеале компонент должен делать только одну вещь. Если он в конечном итоге растет, его следует разбить на более мелкие подкомпоненты.
  • CSS — подумайте, для чего бы вы сделали селекторы классов.
  • Дизайн — подумайте, как бы вы организовали слои дизайна.
Если ваш JSON хорошо структурирован, вы часто обнаружите, что он естественным образом сопоставляется со структурой компонентов вашего пользовательского интерфейса. Это связано с тем, что модели пользовательского интерфейса и данных часто имеют одинаковую информационную архитектуру, то есть одинаковую форму. Разделите свой пользовательский интерфейс на компоненты, где каждый компонент соответствует одной части вашей модели данных.
На этом экране пять компонентов: На этом экране пять компонентов
  1. FilterableProductTable (серый) содержит все приложение.
  2. SearchBar (синий) получает пользовательский ввод.
  3. ProductTable (фиолетовый) отображает и фильтрует список в соответствии с пользовательским вводом.
  4. ProductCategoryRow (зеленый) отображает заголовок для каждой категории.
  5. ProductRow (желтый) отображает строку для каждого продукта.
Если вы посмотрите на ProductTable (фиолетовый), вы увидите, что заголовок таблицы (содержащий метки "Name" и "Price") не является отдельным компонентом. Это вопрос предпочтений, и вы можете пойти любым путем. В этом примере это часть ProductTable, поскольку она появляется внутри списка ProductTable. Однако, если этот заголовок станет сложным (например, если вы добавите сортировку), имеет смысл сделать его отдельным компонентом ProductTableHeader. Теперь, когда вы идентифицировали компоненты макета, расположите их в иерархическом порядке. Компоненты, которые появляются внутри другого компонента в макете, должны отображаться как дочерние элементы в иерархии:
  • FilterableProductTable
    • SearchBar
    • ProductTable
      • ProductCategoryRow
      • ProductRow

Шаг 2: Создайте статичную версию в React

Теперь, когда у вас есть иерархия компонентов, пришло время реализовать ваше приложение. Самый простой подход — создать версию, которая отображает пользовательский интерфейс из вашей модели данных без добавления какой-либо интерактивности… пока! Часто проще сначала создать статичную версию, а затем добавить интерактивность отдельно. Чтобы создать статичную версию приложения, которое отображает вашу модель данных, вам нужно создать компоненты, которые повторно используют другие компоненты и передают данные с помощью пропсов. Пропсы — это способ передачи данных от родителя к дочернему элементу. (Если вы знакомы с концепцией состояния, вообще не используйте состояние для создания этой статичной версии. Состояние зарезервировано только для интерактивности, то есть данных, которые меняются со временем. Поскольку это статичная версия приложения, вам это не нужно.)
Вы можете строить «сверху вниз», начиная с компонентов, расположенных выше в иерархии (например, FilterableProductTable), или «снизу вверх», работая с компонентами, расположенными ниже (например, ProductRow). В более простых примерах обычно проще идти сверху вниз, а в более крупных проектах легче идти снизу вверх.
function ProductCategoryRow({ category }) {
  return (
    <tr>
      <th colSpan="2">{category}</th>
    </tr>
  );
}

function ProductRow({ product }) {
  const name = product.stocked ? (
    product.name
  ) : (
    <span style={{ color: 'red' }}>{product.name}</span>
  );

  return (
    <tr>
      <td>{name}</td>
      <td>{product.price}</td>
    </tr>
  );
}

function ProductTable({ products }) {
  const rows = [];
  let lastCategory = null;

  products.forEach((product) => {
    if (product.category !== lastCategory) {
      rows.push(
        <ProductCategoryRow
          category={product.category}
          key={product.category}
        />
      );
    }
    rows.push(<ProductRow product={product} key={product.name} />);
    lastCategory = product.category;
  });

  return (
    <table>
      <thead>
        <tr>
          <th>Name</th>
          <th>Price</th>
        </tr>
      </thead>
      <tbody>{rows}</tbody>
    </table>
  );
}

function SearchBar() {
  return (
    <form>
      <input type="text" placeholder="Search..." />
      <label>
        <input type="checkbox" /> Only show products in stock
      </label>
    </form>
  );
}

function FilterableProductTable({ products }) {
  return (
    <div>
      <SearchBar />
      <ProductTable products={products} />
    </div>
  );
}

const PRODUCTS = [
  { category: 'Fruits', price: '$1', stocked: true, name: 'Apple' },
  { category: 'Fruits', price: '$1', stocked: true, name: 'Dragonfruit' },
  { category: 'Fruits', price: '$2', stocked: false, name: 'Passionfruit' },
  { category: 'Vegetables', price: '$2', stocked: true, name: 'Spinach' },
  { category: 'Vegetables', price: '$4', stocked: false, name: 'Pumpkin' },
  { category: 'Vegetables', price: '$1', stocked: true, name: 'Peas' },
];

export default function App() {
  return <FilterableProductTable products={PRODUCTS} />;
}
(Если этот код выглядит пугающе, сначала пройдите Быстрый старт.) После создания компонентов у вас будет библиотека повторно используемых компонентов, которые отображают вашу модель данных. Поскольку это статичное приложение, компоненты будут возвращать только JSX. Компонент наверху иерархии (FilterableProductTable) будет использовать вашу модель данных в качестве опоры. Это называется односторонним потоком данных, потому что данные передаются от компонента верхнего уровня к компонентам в нижней части дерева.

Шаг 3. Найдите минимальное, но полное представление состояния пользовательского интерфейса.

Чтобы сделать пользовательский интерфейс интерактивным, вам нужно разрешить пользователям изменять базовую модель данных. Для этого вы будете использовать состояние. Думайте о состоянии как о минимальном наборе изменяющихся данных, которые должно запомнить ваше приложение. Самый важный принцип структурирования состояния — следовать принципу DRY (Don’t Repeat Yourself, не повторяться). Выясните абсолютно минимальное представление состояния, в котором нуждается ваше приложение, и вычислите все остальное по требованию. Например, если вы создаете список покупок, вы можете хранить элементы в виде массива в состоянии. Если вы хотите также отобразить количество элементов в списке, не сохраняйте количество элементов в качестве другого значения состояния — вместо этого считывайте длину вашего массива. Теперь подумайте обо всех фрагментах данных в этом примере приложения:
  1. Первоначальный список продуктов
  2. Текст для поиска, который ввел пользователь
  3. Значение флажка
  4. Отфильтрованный список товаров
Что из этого является состоянием? Определите те, которые не являются:
  1. Остается ли он неизменным с течением времени? Если да, то это не состояние.
  2. Он передается от родителя через проп? Если да, то это не состояние.
  3. Можете ли вы вычислить его на основе существующего состояния или пропса в вашем компоненте? Если да, то это точно не состояние!
То что осталось, наверное, является состояние. Давайте еще раз пройдемся по ним один за другим:
  1. Исходный список продуктов передается в качестве пропса, поэтому он не является состоянием.
  2. Текст поиска кажется состоянием, поскольку он меняется со временем и не может быть вычислен из чего-либо.
  3. Значение флажка кажется состоянием, поскольку оно меняется со временем и не может быть вычислено из чего-либо.
  4. Отфильтрованный список продуктов не является состоянием, поскольку его можно вычислить, взяв исходный список продуктов и отфильтровав его в соответствии с текстом поиска и значением флажка.
Это означает, что только текст поиска и значение флажка являются состоянием.

Пропсы и Состояние

В React есть два типа данных: пропсы и состояние. Они очень разные:
  • Пропсы похожи на аргументы, которые вы передаете в функции. Они позволяют родительскому компоненту передавать данные дочернему компоненту и настраивать его внешний вид. Например, Form может передать проп color в кнопку Button.
  • Состояние похоже на память компонента. Это позволяет компоненту отслеживать некоторую информацию и изменять ее в ответ на взаимодействие. Например, Button может отслеживать состояние isHovered.
Пропсы и состояния разные, но они работают вместе. Родительский компонент часто сохраняет некоторую информацию в состоянии (чтобы он мог ее изменить) и передает ее дочерним компонентам в качестве их пропсов. Ничего страшного, если разница все еще кажется нечеткой при первом чтении. Требуется немного практики.

Шаг 4: Определите, где должно находится ваше состояние

После определения минимальных данных о состоянии вашего приложения вам необходимо определить, какой компонент отвечает за изменение этого состояния или владеет этим состоянием. Помните: React использует односторонний поток данных, передавая данные вниз по иерархии компонентов от родительского к дочернему компоненту. Сразу может быть неясно, какой компонент каким состоянием должен владеть. Это может быть сложно, если вы новичок в этой концепции, но вы можете понять это, выполнив следующие шаги. Для каждой части состояния в вашем приложении:
  1. Определите каждый компонент, который отображает что-то на основе этого состояния.
  2. Найдите их ближайший общий родительский компонент — компонент выше всех в иерархии.
  3. Решите, где должно находится состояние:
    1. Часто вы можете поместить состояние непосредственно в их общего родителя.
    2. Вы также можете поместить состояние в какой-либо компонент над их общим родителем.
    3. Если вы не можете найти компонент, где имеет смысл владеть состоянием, создайте новый компонент исключительно для хранения состояния и добавьте его где-нибудь в иерархии над общим родительским компонентом.
На предыдущем шаге вы нашли в этом приложении две части состояния: вводимый текст поиска и значение флажка. В этом примере они всегда появляются вместе, поэтому их легче представить как единый элемент состояния.
Теперь давайте рассмотрим нашу стратегию для этого состояния:
  1. Определите компоненты, которые используют состояние: ProductTable необходимо отфильтровать список продуктов на основе этого состояния (текст поиска и значение флажка). SearchBar должен отображать это состояние (текст поиска и значение флажка).
  2. Найдите их общего родителя: первый родительский компонент, который используется обоими компонентами, — это FilterableProductTable.
  3. Решите, где находится состояние: мы сохраним текст фильтра и проверенные значения состояния в FilterableProductTable.
Таким образом, значения состояния будут жить в FilterableProductTable. Добавьте состояние к компоненту с помощью хука useState(). Хуки позволяют «подключиться» к циклу рендеринга компонента. Добавьте две переменные состояния вверху FilterableProductTable и укажите начальное состояние вашего приложения:
function FilterableProductTable({ products }) {
  const [filterText, setFilterText] = useState('');
  const [inStockOnly, setInStockOnly] = useState(false);
Затем передайте filterText и inStockOnly в ProductTable и SearchBar в качестве проса:
<div>
  <SearchBar filterText="{filterText}" inStockOnly="{inStockOnly}" />
  <ProductTable
    products="{products}"
    filterText="{filterText}"
    inStockOnly="{inStockOnly}"
  />
</div>
Вы можете начать видеть, как будет вести себя ваше приложение. Измените начальное значение filterText с useState('') на useState('fruit') в приведенном ниже коде песочницы. Вы увидите как текст ввода поиска, так и обновление таблицы:
import { useState } from 'react';

function FilterableProductTable({ products }) {
  const [filterText, setFilterText] = useState('');
  const [inStockOnly, setInStockOnly] = useState(false);

  return (
    <div>
      <SearchBar filterText={filterText} inStockOnly={inStockOnly} />
      <ProductTable
        products={products}
        filterText={filterText}
        inStockOnly={inStockOnly}
      />
    </div>
  );
}

function ProductCategoryRow({ category }) {
  return (
    <tr>
      <th colSpan="2">{category}</th>
    </tr>
  );
}

function ProductRow({ product }) {
  const name = product.stocked ? (
    product.name
  ) : (
    <span style={{ color: 'red' }}>{product.name}</span>
  );

  return (
    <tr>
      <td>{name}</td>
      <td>{product.price}</td>
    </tr>
  );
}

function ProductTable({ products, filterText, inStockOnly }) {
  const rows = [];
  let lastCategory = null;

  products.forEach((product) => {
    if (product.name.toLowerCase().indexOf(filterText.toLowerCase()) === -1) {
      return;
    }
    if (inStockOnly && !product.stocked) {
      return;
    }
    if (product.category !== lastCategory) {
      rows.push(
        <ProductCategoryRow
          category={product.category}
          key={product.category}
        />
      );
    }
    rows.push(<ProductRow product={product} key={product.name} />);
    lastCategory = product.category;
  });

  return (
    <table>
      <thead>
        <tr>
          <th>Name</th>
          <th>Price</th>
        </tr>
      </thead>
      <tbody>{rows}</tbody>
    </table>
  );
}

function SearchBar({ filterText, inStockOnly }) {
  return (
    <form>
      <input type="text" value={filterText} placeholder="Search..." />
      <label>
        <input type="checkbox" checked={inStockOnly} /> Only show products in
        stock
      </label>
    </form>
  );
}

const PRODUCTS = [
  { category: 'Fruits', price: '$1', stocked: true, name: 'Apple' },
  { category: 'Fruits', price: '$1', stocked: true, name: 'Dragonfruit' },
  { category: 'Fruits', price: '$2', stocked: false, name: 'Passionfruit' },
  { category: 'Vegetables', price: '$2', stocked: true, name: 'Spinach' },
  { category: 'Vegetables', price: '$4', stocked: false, name: 'Pumpkin' },
  { category: 'Vegetables', price: '$1', stocked: true, name: 'Peas' },
];

export default function App() {
  return <FilterableProductTable products={PRODUCTS} />;
}
Обратите внимание, что редактирование формы пока не работает. В приведенном выше коде есть ошибка консоли, объясняющая, почему:
You provided a `value` prop to a form field without an `onChange` handler. This will render a read-only field.


Вы предоставили проп `value` для поля формы без обработчика `onChange`. Это отобразит поле только для чтения.
В приведенном выше коде ProductTable и SearchBar считывают пропсы filterText и inStockOnly для отображения таблицы, ввода и флажка. Например, вот как SearchBar заполняет входное значение:
function SearchBar({ filterText, inStockOnly }) {
  return (
    <form>
      <input
        type="text"
        value={filterText}
        placeholder="Search..."/>
Однако вы еще не добавили никакого кода для реагирования на действия пользователя, такие как ввод текста. Сделаем это в следующем шаге.

Шаг 5. Добавьте обратный поток данных

В настоящее время ваше приложение корректно отображается с пропсами и состоянием, спускающимися по иерархии. Но чтобы изменить состояние в соответствии с пользовательским вводом, вам нужно будет поддерживать поток данных в обратном направлении: компоненты формы глубоко в иерархии должны обновить состояние в FilterableProductTable. React делает этот поток данных явным, но требует немного большего набора текста, чем двусторонняя привязка данных. Если вы попытаетесь ввести или установить флажок в приведенном выше примере, вы увидите, что React игнорирует ваш ввод. Это сделано намеренно. Написав <input value={filterText} />, вы установили проп value для input, чтобы оно всегда было равно состоянию filterText, переданному из FilterableProductTable. Поскольку состояние filterText никогда не устанавливается, ввод никогда не изменяется. Вы хотите сделать так, чтобы всякий раз, когда пользователь меняет ввод формы, состояние обновлялось, чтобы отражать эти изменения. Состояние принадлежит FilterableProductTable, поэтому только он может вызывать setFilterText и setInStockOnly. Чтобы позволить SearchBar обновлять состояние FilterableProductTable, вам нужно передать эти функции в SearchBar:
function FilterableProductTable({ products }) {
  const [filterText, setFilterText] = useState('');
  const [inStockOnly, setInStockOnly] = useState(false);

  return (
    <div>
      <SearchBar
        filterText={filterText}
        inStockOnly={inStockOnly}
        onFilterTextChange={setFilterText}
        onInStockOnlyChange={setInStockOnly} />
Внутри SearchBar вы добавите обработчики событий onChange, который установит родительское состояние:
<input
  type="text"
  value={filterText}
  placeholder="Search..."
  onChange={(e) => onFilterTextChange(e.target.value)}
/>
Теперь приложение работает!
import { useState } from 'react';

function FilterableProductTable({ products }) {
  const [filterText, setFilterText] = useState('');
  const [inStockOnly, setInStockOnly] = useState(false);

  return (
    <div>
      <SearchBar
        filterText={filterText}
        inStockOnly={inStockOnly}
        onFilterTextChange={setFilterText}
        onInStockOnlyChange={setInStockOnly}
      />
      <ProductTable
        products={products}
        filterText={filterText}
        inStockOnly={inStockOnly}
      />
    </div>
  );
}

function ProductCategoryRow({ category }) {
  return (
    <tr>
      <th colSpan="2">{category}</th>
    </tr>
  );
}

function ProductRow({ product }) {
  const name = product.stocked ? (
    product.name
  ) : (
    <span style={{ color: 'red' }}>{product.name}</span>
  );

  return (
    <tr>
      <td>{name}</td>
      <td>{product.price}</td>
    </tr>
  );
}

function ProductTable({ products, filterText, inStockOnly }) {
  const rows = [];
  let lastCategory = null;

  products.forEach((product) => {
    if (product.name.toLowerCase().indexOf(filterText.toLowerCase()) === -1) {
      return;
    }
    if (inStockOnly && !product.stocked) {
      return;
    }
    if (product.category !== lastCategory) {
      rows.push(
        <ProductCategoryRow
          category={product.category}
          key={product.category}
        />
      );
    }
    rows.push(<ProductRow product={product} key={product.name} />);
    lastCategory = product.category;
  });

  return (
    <table>
      <thead>
        <tr>
          <th>Name</th>
          <th>Price</th>
        </tr>
      </thead>
      <tbody>{rows}</tbody>
    </table>
  );
}

function SearchBar({
  filterText,
  inStockOnly,
  onFilterTextChange,
  onInStockOnlyChange,
}) {
  return (
    <form>
      <input
        type="text"
        value={filterText}
        placeholder="Search..."
        onChange={(e) => onFilterTextChange(e.target.value)}
      />
      <label>
        <input
          type="checkbox"
          checked={inStockOnly}
          onChange={(e) => onInStockOnlyChange(e.target.checked)}
        />{' '}
        Only show products in stock
      </label>
    </form>
  );
}

const PRODUCTS = [
  { category: 'Fruits', price: '$1', stocked: true, name: 'Apple' },
  { category: 'Fruits', price: '$1', stocked: true, name: 'Dragonfruit' },
  { category: 'Fruits', price: '$2', stocked: false, name: 'Passionfruit' },
  { category: 'Vegetables', price: '$2', stocked: true, name: 'Spinach' },
  { category: 'Vegetables', price: '$4', stocked: false, name: 'Pumpkin' },
  { category: 'Vegetables', price: '$1', stocked: true, name: 'Peas' },
];

export default function App() {
  return <FilterableProductTable products={PRODUCTS} />;
}
Вы можете узнать все об обработке событий и обновлении состояния в разделе "Добавление интерактивности".