Быстрый старт с React

9 месяцев назад·7 мин. на чтение

React приложения состоят из компонентов. Компонент — это часть UI (пользовательского интерфейса), которая имеет собственную логику и внешний вид. Компонент может быть маленьким, как кнопка, или большим, как целая страница.

Содержание туториала по React Эта страница познакомит вас с 80% концепций React, которые вы будете использовать ежедневно.

Создание компонентов

React приложения состоят из компонентов. Компонент — это часть UI (пользовательского интерфейса), которая имеет собственную логику и внешний вид. Компонент может быть маленьким, как кнопка, или большим, как целая страница. React компоненты — это функции JavaScript, которые возвращают разметку:
function MyButton() {
  return <button>I'm a button</button>;
}
Теперь, когда вы объявили MyButton, вы можете вложить его в другой компонент:
export default function MyApp() {
  return (
    <div>
      <h1>Welcome to my app</h1>
      <MyButton />
    </div>
  );
}
Обратите внимание, что <MyButton /> начинается с заглавной буквы. Так мы узнаем, что это React компонент. Имена React компонентов всегда должны начинаться с заглавной буквы, а теги HTML должны быть строчными. Ключевые слова export default определяют главный компонент в файле.

Написание разметки с помощью JSX

Синтаксис разметки, который вы видели выше, называется JSX. Это необязательно, но большинство проектов React используют JSX для удобства. Все рекомендуемые для локальной разработки инструменты, поддерживают JSX «из коробки». JSX строже, чем HTML. Вы должны закрыть теги типа <br />. Ваш компонент также не может возвращать несколько тегов JSX. Вы должны обернуть их в общий родитель, например <div>...</div> или пустую оболочку <>...</>:
function AboutPage() {
  return (
    <>
      <h1>About</h1>
      <p>
        Hello there.
        <br />
        How do you do?
      </p>
    </>
  );
}
Если у вас есть много HTML для переноса в JSX, вы можете использовать онлайн-конвертер.

Добавление стилей

В React вы указываете CSS класс с помощью className. Он работает так же, как атрибут class в HTML:
<img className="avatar" />
Затем вы пишете правила CSS для него в отдельном файле CSS:
/* In your CSS */
.avatar {
  border-radius: 50%;
}
React не предписывает, как добавлять файлы CSS. В самом простом случае вы добавите тег <link> в свой HTML. Если вы используете инструмент сборки или фреймворк, обратитесь к его документации, чтобы узнать, как добавить файл CSS в свой проект.

Отображение данных

JSX позволяет размещать разметку в JavaScript. Фигурные скобки позволяют вам «уйти обратно» в JavaScript, чтобы вы могли внедрить некоторую переменную из своего кода и отобразить ее пользователю. Например, это отобразит user.name:
return <h1>{user.name}</h1>;
Вы также можете «убежать в JavaScript» из атрибутов JSX, но вам нужно использовать фигурные скобки вместо кавычек. Например, className="avatar" передает строку "avatar" как CSS класс, но src={user.imageUrl} считывает значение JavaScript переменной user.imageUrl, а затем передает это значение как атрибут src:
return <img className="avatar" src={user.imageUrl} />;
Вы также можете поместить более сложные выражения в фигурные скобки JSX, например, конкатенацию строк:
const user = {
  name: 'Hedy Lamarr',
  imageUrl: 'https://i.imgur.com/yXOvdOSs.jpg',
  imageSize: 90,
};

export default function Profile() {
  return (
    <>
      <h1>{user.name}</h1>
      <img
        className="avatar"
        src={user.imageUrl}
        alt={'Photo of ' + user.name}
        style={{
          width: user.imageSize,
          height: user.imageSize,
        }}
      />
    </>
  );
}
В приведенном выше примере style={{}} не является специальным синтаксисом, а является обычным объектом {} внутри фигурных скобок style={ } JSX. Вы можете использовать атрибут style, когда ваши стили зависят от переменных JavaScript.

Рендеринг по условию

В React нет специального синтаксиса для написания условий. Вместо этого можно использовать те же приемы, что и при написании обычного JavaScript кода. Например, вы можете использовать оператор if для условного включения JSX:
let content;
if (isLoggedIn) {
  content = <AdminPanel />;
} else {
  content = <LoginForm />;
}
return <div>{content}</div>;
Если вы предпочитаете более компактный код, вы можете использовать условный ? оператор. В отличие от if, он работает внутри JSX:
<div>{isLoggedIn ? <AdminPanel /> : <LoginForm />}</div>
Если вам не нужна ветвь else, вы также можете использовать более короткий синтаксис логического &&:
<div>{isLoggedIn && <AdminPanel />}</div>
Все эти подходы также работают для указанных по условию атрибутов. Если вы не знакомы с некоторыми элементами этого синтаксиса JavaScript, вы можете начать с постоянного использования if...else.

Рендеринг списков

Вы будете полагаться на возможности JavaScript, такие как цикл for и метод массива map() для отображения списков компонентов. Например, допустим, у вас есть набор продуктов:
const products = [
  { title: 'Cabbage', id: 1 },
  { title: 'Garlic', id: 2 },
  { title: 'Apple', id: 3 },
];
Внутри вашего компонента используйте метод map() для преобразования массива продуктов в массив элементов <li>:
const listItems = products.map((product) => (
  <li key={product.id}>{product.title}</li>
));

return <ul>{listItems}</ul>;
Обратите внимание, что <li> имеет атрибут key. Для каждого элемента в списке вы должны передать строку или число, которое однозначно идентифицирует этот элемент среди его соседних элементов. Обычно ключ должен исходить из ваших данных, таких как идентификатор базы данных. React будет полагаться на ваши ключи, чтобы понять, что произошло, если вы позже вставите, удалите или измените порядок элементов.
const products = [
  { title: 'Cabbage', isFruit: false, id: 1 },
  { title: 'Garlic', isFruit: false, id: 2 },
  { title: 'Apple', isFruit: true, id: 3 },
];

export default function ShoppingList() {
  const listItems = products.map((product) => (
    <li
      key={product.id}
      style={{
        color: product.isFruit ? 'magenta' : 'darkgreen',
      }}
    >
      {product.title}
    </li>
  ));

  return <ul>{listItems}</ul>;
}

Реакция на события

Вы можете реагировать на события, объявляя функции обработчиков событий внутри ваших компонентов:
function MyButton() {
  function handleClick() {
    alert('You clicked me!');
  }

  return <button onClick={handleClick}>Click me</button>;
}
Обратите внимание, что onClick={handleClick} не имеет круглых скобок в конце. Не вызывайте функцию обработчика событий: вам нужно только передать ее вниз. React вызовет ваш обработчик событий, когда пользователь нажмет кнопку.

Обновление компонентов

Часто необходимо, чтобы компонент «запоминал» некоторую информацию и отображал ее. Например, может быть, вы хотите подсчитать, сколько раз была нажата кнопка. Для этого нужно добавить состояние к компоненту. Во-первых, импортируйте useState из React: Теперь вы можете объявить переменную состояния внутри вашего компонента:
function MyButton() {
  const [count, setCount] = useState(0);
От useState вы получите две вещи: текущее состояние (count) и функцию, которая позволяет вам его обновить (setCount). Вы можете давать им любые имена, но принято называть их как [something, setSomething]. При первом отображении кнопки count будет равен 0, потому что вы передали 0 в useState(). Если вы хотите изменить состояние, вызовите setCount() и передайте ему новое значение. Нажатие на эту кнопку увеличит счетчик:
function MyButton() {
  const [count, setCount] = useState(0);

  function handleClick() {
    setCount(count + 1);
  }

  return <button onClick={handleClick}>Clicked {count} times</button>;
}
React снова вызовет функцию вашего компонента. На этот раз счет будет 1. Затем будет 2. И так далее. Если вы визуализируете один и тот же компонент несколько раз, каждый из них получит свое собственное состояние.
import { useState } from 'react';

export default function MyApp() {
  return (
    <div>
      <h1>Counters that update separately</h1>
      <MyButton />
      <MyButton />
    </div>
  );
}

function MyButton() {
  const [count, setCount] = useState(0);

  function handleClick() {
    setCount(count + 1);
  }

  return <button onClick={handleClick}>Clicked {count} times</button>;
}
Обратите внимание, как каждая кнопка «запоминает» свое собственное состояние счетчика и не влияет на другие кнопки.

Использование хуков

Функции, начинающиеся с use, называются хуками. useState — это встроенный хук, предоставляемый React. Вы можете найти другие встроенные хуки в справочнике React API. Вы также можете написать свои собственные хуки, комбинируя существующие. Хуки накладывают больше ограничений, чем обычные функции. Вы можете вызывать хуки только на верхнем уровне ваших компонентов (или других хуков). Если вы хотите использовать useState в условии или цикле, создайте новый компонент и поместите его туда.

Обмен данными между компонентами

В предыдущем примере у каждой MyButton был собственный независимый счетчик, и при нажатии каждой кнопки менялся только счетчик нажатой кнопки. Однако часто вам потребуются компоненты для обмена данными и постоянного обновления вместе. Чтобы оба компонента MyButton отображали одно и то же число и обновлялись вместе, вам нужно переместить состояние от отдельных кнопок «вверх» к ближайшему родительскому компоненту, содержащему их все. Теперь, когда вы нажмете любую кнопку, счетчик в MyApp изменится, что изменит оба счетчика в MyButton. Вот как это можно выразить в коде.
Во-первых, переместите состояние из MyButton в MyApp:
export default function MyApp() {
  const [count, setCount] = useState(0);

  function handleClick() {
    setCount(count + 1);
  }

  return (
    <div>
      <h1>Counters that update separately</h1>
      <MyButton />
      <MyButton />
    </div>
  );
}

function MyButton() {
  //
}
Затем передайте состояние из MyApp в каждый MyButton вместе с общим обработчиком кликов. Вы можете передавать информацию в MyButton с помощью фигурных скобок JSX, точно так же, как вы делали это раньше со встроенными тегами, такими как <img>:
export default function MyApp() {
  const [count, setCount] = useState(0);

  function handleClick() {
    setCount(count + 1);
  }

  return (
    <div>
      <h1>Счетчики, изменяющиеся вместе</h1>
      <MyButton count={count} onClick={handleClick} />
      <MyButton count={count} onClick={handleClick} />
    </div>
  );
}
Информация, которую вы передаете таким образом, называется пропсами. Теперь компонент MyApp содержит состояние счетчика и обработчик события handleClick и передает их оба в качестве пропсов каждой из кнопок. Наконец, измените MyButton, чтобы он считывал пропсы, которые вы передали из его родительского компонента:
function MyButton({ count, onClick }) {
  return <button onClick={onClick}>Clicked {count} times</button>;
}
Когда вы нажимаете кнопку, срабатывает обработчик onClick. Проп onClick каждой кнопки было установлено на функцию handleClick внутри MyApp, поэтому код внутри него выполняется. Этот код вызывает setCount(count + 1), увеличивая переменную состояния count. Новое значение счетчика передается в качестве пропса каждой кнопке, поэтому все они показывают новое значение. Это называется «подъем состояния вверх». Переместив состояние вверх, мы разделили его между компонентами.
import { useState } from 'react';

export default function MyApp() {
  const [count, setCount] = useState(0);

  function handleClick() {
    setCount(count + 1);
  }

  return (
    <div>
      <h1>Счетчики, изменяющиеся вместе</h1>
      <MyButton count={count} onClick={handleClick} />
      <MyButton count={count} onClick={handleClick} />
    </div>
  );
}

function MyButton({ count, onClick }) {
  return <button onClick={onClick}>Clicked {count} times</button>;
}
Подробнее о всех случаях передачи данных между компонентами можно прочитать здесь.

Как типизировать с TypeScript?

год назад·14 мин. на чтение

В этой статье рассмотрим самые популярные типы, которые используются в JavaScript коде, и объясним способы описания этих типов в TypeScript.

Мы начнем с обзора самых основных и распространенных типов, с которыми вы можете столкнуться при написании JavaScript или TypeScript кода. Позже они сформируют основные строительные блоки для более сложных типов.

Примитивы: string, number, boolean

В JavaScript есть три очень часто используемых примитива: string, number и boolean. У каждого есть соответствующий тип в TypeScript. Как и следовало ожидать, это те же самые имена, которые вы увидели бы, если бы использовали оператор JavaScript typeof для значений этих типов:
  • string представляет строковые значения, такие как "Hello, world"
  • number для чисел вроде 42. В JavaScript нет различий между целочисленными значениями и значениями с плавающей точкой, поэтому нет эквивалента int или float — все просто number
  • boolean для двух значений true и false
Типы String, Number и Boolean (начинающиеся с заглавных букв) допустимы, но относятся к некоторым специальным встроенным типам, которые очень редко встречаются в коде. Всегда используйте типы string, number или boolean.

Типизация массивов

Чтобы указать тип массива, например [1, 2, 3], вы можете использовать синтаксис number[]; этот синтаксис работает для любого типа (например, string[] — это массив строк и т.д.). Вы также можете встретить синтаксис Array<number>, что означает то же самое. Обратите внимание, что [number] — это не массив чисел, а кортеж (tuple).

Тип any

TypeScript также имеет специальный тип any, который вы можете использовать всякий раз, когда вы не хотите, чтобы определенное значение вызывало ошибки проверки типов. Когда значение имеет тип any, вы можете получить доступ к любым его свойствам (которые, в свою очередь, будут иметь тип any), вызвать его как функцию, присвоить ему значения любого типа или почти все что угодно. Это валидный синтаксис:
let obj: any = { x: 0 };
// Ни одна из следующих строк кода не вызовет ошибок компилятора.
// Использование any отключает все дальнейшие проверки типов и предполагается, что
// вы знаете эти сценарии лучше, чем TypeScript.

obj.foo();
obj();
obj.bar = 100;
obj = 'hello';
const n: number = obj;
Тип any полезен, когда вы не хотите записывать длинный тип. Тип any нужен только для того, чтобы убедить TypeScript в том, что конкретная строка кода валидна.

noImplicitAny

Когда вы не указываете тип и TypeScript не может вывести его из контекста, компилятор обычно по умолчанию использует тип any. Обычно этого следует избегать, потому что тип any не проверяется. Используйте флаг компилятора noImplicitAny, чтобы пометить любое неявное значение any как ошибку.

Аннотации типов переменных

Когда вы объявляете переменную с помощью const, var или let, вы можете дополнительно добавить аннотацию типа, чтобы явно указать тип переменной:
let myName: string = 'Alice';
TypeScript не использует объявления в стиле «типы слева», такие как int x = 0; Аннотации типа всегда будут находится после. Однако в большинстве случаев в этом нет необходимости. Везде, где это возможно, TypeScript пытается автоматически определить типы в вашем коде. Например, тип переменной выводится на основе типа ее инициализатора:
// Аннотации типа не требуются — тип 'myName' выводится как 'string'
let myName = 'Alice';
По большей части вам не нужно явно изучать правила вывода. Если вы только начинаете, попробуйте использовать меньше аннотаций типов — вы удивитесь, как мало нужно для TypeScript, чтобы он понимал, что происходит.

Как типизировать функции в TypeScript?

Функции — это основное средство для работы с данными в JavaScript. TypeScript позволяет указывать типы как входных, так и выходных значений функций.

Аннотации типов параметров

Когда вы объявляете функцию, вы можете добавить аннотации типа после каждого параметра, чтобы объявить, какие типы параметров принимает функция. Аннотации типа параметра идут после имени параметра:
// Аннотация типа параметра
function greet(name: string) {
  console.log('Hello, ' + name.toUpperCase() + '!!');
}
Когда параметр имеет аннотацию типа, будут проверены аргументы этой функции:
// При вызове возникнет ошибка времени выполнения
greet(42);

// Argument of type 'number' is not assignable to parameter of type 'string'.
Даже если вы не указали аннотации типов для параметров, TypeScript все равно проверит, что вы передали правильное количество аргументов.

Аннотации типа возвращаемого значения

Вы также можете добавить аннотации типа возвращаемого значения. Аннотации типа возвращаемого значения добавляется после списка параметров:
function getFavoriteNumber(): number {
  return 26;
}
Подобно аннотациям типа переменной, вам обычно не нужна аннотация типа возвращаемого значения, потому что TypeScript будет делать вывод о типе возвращаемого значения функции на основе ее оператора return. Аннотация типа в приведенном выше примере ничего не меняет. Некоторые кодовые базы явно указывают тип возвращаемого значения для документирования, для предотвращения случайных изменений или просто из-за личных предпочтений.

Анонимные функции

Анонимные функции немного отличаются от объявлений обычных функций. Когда функция появляется в месте, где TypeScript может определить, как она будет вызываться, параметрам этой функции автоматически присваиваются типы. Например:
// Здесь нет аннотаций типов, но TypeScript может обнаружить ошибку
const names = ['Alice', 'Bob', 'Eve'];

// Определение типа на основе контекста
names.forEach(function (s) {
  console.log(s.toUppercase());

  // Property 'toUppercase' does not exist on type 'string'. Did you mean 'toUpperCase'?
  // В типе 'string' нет свойства 'toUppercase'. Возможно, вы имели ввиду 'toUpperСase'?
});

// Определение типа на основе контекста вызова функции также работает и для стрелочных функций
names.forEach((s) => {
  console.log(s.toUppercase());

  // Property 'toUppercase' does not exist on type 'string'. Did you mean 'toUpperCase'?
  // В типе 'string' нет свойства 'toUppercase'. Возможно, вы имели ввиду 'toUpperСase'?
});
Несмотря на то, что у параметра s не было аннотации типа, TypeScript использовал типы функции forEach вместе с предполагаемым типом массива, чтобы определить тип, который будет иметь s. Этот процесс называется контекстной типизацией, потому что контекст, в котором возникла функция, сообщает, какой тип она должна иметь. Как и в случае с правилами вывода, вам не нужно явно знать, как это происходит, но понимание того, что это действительно происходит, может помочь вам заметить, когда аннотации типов не нужны. Позже мы увидим больше примеров того, как контекст, в котором встречается значение, может повлиять на его тип.

Как типизировать объекты в TypeScript?

Помимо примитивов, наиболее распространенным типом, с которым вы столкнетесь, является объект. Это относится к любому значению JavaScript со свойствами. Чтобы определить тип объекта, мы просто перечисляем его свойства и их типы. Например, вот функция, которая принимает объект точку:
// Аннотация типа параметра является типом объекта
function printCoord(pt: { x: number; y: number }) {
  console.log("The coordinate's x value is " + pt.x);
  console.log("The coordinate's y value is " + pt.y);
}
printCoord({ x: 3, y: 7 });
Здесь мы типизировали параметр двумя свойствами — x и y — оба типа number. Вы можете использовать , или ; для разделения свойств, а последний разделитель необязателен. Указание типа каждого свойства также необязательно. Если вы не укажете тип, он будет считаться any.

Необязательные свойства

Типы объектов также могут указывать, что некоторые или все их свойства являются необязательными. Для этого добавьте ? после имени свойства:
function printName(obj: { first: string; last?: string }) {
  // ...
}

// Следующие вызовы не вызовут ошибок
printName({ first: 'Bob' });
printName({ first: 'Alice', last: 'Alisson' });
В JavaScript, если вы обращаетесь к несуществующему свойству, вы получите значение undefined, а не ошибку времени выполнения. Из-за этого, когда вы читаете из необязательного свойства, вам придется проверять его на undefined перед его использованием.
function printName(obj: { first: string; last?: string }) {
  // Ошибка, если obj.last не предоставлен:
  console.log(obj.last.toUpperCase());
Object is possibly 'undefined'.
  if (obj.last !== undefined) {
    // OK
    console.log(obj.last.toUpperCase());
  }

  // Безопасная альтернатива с использованием современного синтаксиса JavaScript:
  console.log(obj.last?.toUpperCase());
}

Объединение типов (Unions)

Система типов TypeScript позволяет вам создавать новые типы из существующих, используя большое количество операторов. Теперь, когда мы знаем, как писать несколько типов, пора начать комбинировать их интересными способами.

Определение объединенного типа

Первый способ комбинирования типов, который вы встретить - это объединение типов. Объединение типов - это тип, сформированный из двух или более других типов, представляющих значения, которые могут быть любым из этих типов. Давайте напишем функцию, которая может работать со строками или числами:
function printId(id: number | string) {
  console.log('Your ID is: ' + id);
}

// Работает
printId(101);

// Работает
printId('202');

// Ошибка
printId({ myID: 22342 });

// Argument of type '{ myID: number; }' is not assignable to parameter of type 'string | number'.

Работа с объединенными типами

TypeScript разрешит операцию только в том случае, если она действительна для каждого члена объединения. Например, если у вас есть объединение string | number, вы не можете использовать методы, доступные только для string:
function printId(id: number | string) {
  console.log(id.toUpperCase());

  // Property 'toUpperCase' does not exist on type 'string | number'.
  // Property 'toUpperCase' does not exist on type 'number'.
}
Решение состоит в том, чтобы сузить объединение с помощью кода, как в JavaScript без аннотаций типов. Сужение происходит, когда TypeScript может определить более конкретный тип для значения на основе структуры кода. Например, TypeScript знает, что только строковое значение будет иметь значение "string" при применении оператора typeof:
function printId(id: number | string) {
  if (typeof id === 'string') {
    // Здесь id имеет тип 'string'
    console.log(id.toUpperCase());
  } else {
    // Здесь id имеет тип 'number'
    console.log(id);
  }
}
Другой пример — использование такой функции, как Array.isArray:
function welcomePeople(x: string[] | string) {
  if (Array.isArray(x)) {
    // Здесь: 'x' это 'string[]'
    console.log('Hello, ' + x.join(' and '));
  } else {
    // Здесь: 'x' это 'string'
    console.log('Welcome lone traveler ' + x);
  }
}
Обратите внимание, что в ветке else нам не нужно делать ничего особенного — если x не является string[], то это должна быть строка. Иногда у вас будет объединение, в котором все члены имеют что-то общее. Например, и массивы, и строки имеют метод slice. Если у каждого члена объединения есть общее свойство, вы можете использовать это свойство без сужения:
// Возвращаемый тип определяется из number[] | string
function getFirstThree(x: number[] | string) {
  return x.slice(0, 3);
}
Может сбивать с толку тот факт, что объединение типов имеет пересечение свойств этих типов. Это не случайно — название union происходит из теории типов. Объединение number | string состоит из объединения значений каждого типа. Обратите внимание, что для двух множеств с соответствующими фактами о каждом множестве к объединению самих множеств применимо только пересечение этих фактов. Например, если бы у нас была комната с высокими людьми в шляпах и другая комната с говорящими по-испански в шляпах, после объединения этих комнат единственное, что мы знаем о каждом человеке, это то, что он должен быть в шляпе.

Псевдонимы типов (алиасы, aliases)

Мы использовали типы объектов и типы объединения, записывая их непосредственно в аннотациях типов. Это удобно, но часто хочется использовать один и тот же тип более одного раза и ссылаться на него по одному имени. Псевдоним типа — это именно то, что является именем для любого типа. Синтаксис псевдонима типа:
type Point = {
  x: number;
  y: number;
};

// Тоже самое как и в прошлом примере
function printCoord(pt: Point) {
  console.log("The coordinate's x value is " + pt.x);
  console.log("The coordinate's y value is " + pt.y);
}

printCoord({ x: 100, y: 100 });
Вы можете использовать псевдоним типа, чтобы дать имя любому типу, а не только объектному типу. Например, псевдоним типа может включать тип объединения:
type ID = number | string;
Обратите внимание, что псевдонимы — это всего лишь псевдонимы — вы не можете использовать псевдонимы типов для создания разных/отличных «версий» одного и того же типа. Другими словами, этот код может выглядеть недопустимым, но в соответствии с TypeScript это нормально, потому что оба типа являются псевдонимами для одного и того же типа:
type UserInputSanitizedString = string;

function sanitizeInput(str: string): UserInputSanitizedString {
  return sanitize(str);
}

// Значение типа UserInputSanitizedString
let userInput = sanitizeInput(getInput());

// может также присваивать строку
userInput = 'new input';

Интерфейсы

Объявление интерфейса — это еще один способ объявить тип объекта:
interface Point {
  x: number;
  y: number;
}

function printCoord(pt: Point) {
  console.log("The coordinate's x value is " + pt.x);
  console.log("The coordinate's y value is " + pt.y);
}

printCoord({ x: 100, y: 100 });
Точно так же, как когда мы использовали псевдоним типа выше, пример работает так же, как если бы мы использовали анонимный тип объекта. TypeScript заботится только о структуре значения, которое мы передали в printCoord, — то, что оно имеет ожидаемые свойства. Занимаясь только структурой и возможностями типов, мы называем TypeScript структурно типизированной (structurally typed) системой типов.

Различия типа и интерфейса в TypeScript

Псевдонимы типов (type) и интерфейсы очень похожи, и во многих случаях вы можете свободно выбирать между ними. Почти все возможности интерфейса доступны в типе, ключевое отличие состоит в том, что тип нельзя повторно открыть для добавления новых свойств по сравнению с интерфейсом, который всегда расширяем. Расширение интерфейса:
interface Animal {
  name: string;
}

interface Bear extends Animal {
  honey: boolean;
}

const bear = getBear();
bear.name;
bear.honey;
Расширение типа через пересечения:
type Animal = {
  name: string;
};

type Bear = Animal & {
  honey: boolean;
};

const bear = getBear();
bear.name;
bear.honey;
Добавление новых полей в существующий интерфейс:
interface Window {
  title: string;
}

interface Window {
  ts: TypeScriptAPI;
}

const src = 'const a = "Hello World"';
window.ts.transpileModule(src, {});
Тип нельзя изменить после создания:
type Window = {
  title: string;
};

type Window = {
  ts: TypeScriptAPI;
};

// Error: Duplicate identifier 'Window'
Вы узнаете больше об этих понятиях в следующих главах, так что не беспокойтесь, если вы не сразу все поймете.
  • До TypeScript версии 4.2 имена псевдонимов могут появляться в сообщениях об ошибках, иногда вместо эквивалентного анонимного типа. Интерфейсы всегда будут иметь имена в сообщениях об ошибках.
  • Псевдонимы типов не могут участвовать в слиянии объявлений, но интерфейсы могут.
  • Интерфейсы могут использоваться только для объявления форм объектов, а не для переименования примитивов.
  • Имена интерфейсов всегда будут отображаться в исходном виде в сообщениях об ошибках, но только тогда, когда они используются по имени.
По большей части вы можете выбирать на основе личных предпочтений, и TypeScript сообщит вам, нужно ли ему что-то еще. В общем, используйте интерфейс, пока вам не понадобятся возможности типа.

Утверждения типа (Type Assertions)

Иногда у вас будет информация о типе значения, о котором TypeScript не может узнать. Например, если вы используете document.getElementById, TypeScript знает только, что это вернет какой-то HTMLElement, но вы можете знать, что на вашей странице всегда будет HTMLCanvasElement с заданным идентификатором. В этой ситуации вы можете использовать утверждение типа, чтобы указать более конкретный тип:
const myCanvas = document.getElementById('main_canvas') as HTMLCanvasElement;
Подобно аннотации типа, утверждения типа удаляются компилятором и не влияют на поведение вашего кода во время выполнения. Вы также можете использовать синтаксис угловых скобок (кроме случаев, когда код находится в файле .tsx), что эквивалентно:
const myCanvas = <HTMLCanvasElement>document.getElementById('main_canvas');
TypeScript допускает только утверждения типа, которые преобразуются в более конкретную или менее конкретную версию типа. Это правило предотвращает «невозможные» приведения, такие как:
const x = 'hello' as number;

// Conversion of type 'string' to type 'number' may be a mistake because neither type sufficiently overlaps with the other. If this was intentional, convert the expression to 'unknown' first.
// Преобразование типа 'string' в тип 'number' может быть ошибкой, поскольку ни один из типов в достаточной степени не перекрывает другой. Если это было сделано намеренно, сначала преобразуйте выражение к типу 'unknown'.
Иногда это правило может быть слишком консервативным и запрещать более сложные приведения, которые могут быть действительными. Если это произойдет, вы можете использовать два утверждения, сначала для any (или unknown), затем для нужного типа:
const a = expr as any as T;

Литеральные типы (Literal Types)

В дополнение к общим типам string и number мы можем ссылаться на определенные строки и числа в позициях типа. Один из способов это представить — рассмотреть, как в JavaScript существуют различные способы объявления переменных. И var, и let позволяют изменять содержимое переменной, а const — нет. Это отражено в том, как TypeScript создает типы для литералов.
let changingString = 'Hello World';
changingString = 'Olá Mundo';

// Поскольку `changingString` может представлять любую возможную строку, именно так TypeScript описывает ее в системе типов

const constantString = 'Hello World';
// Поскольку `constantString` может представлять только 1 возможную строку, она имеет буквальное представление типа.
Сами по себе литеральные типы не очень ценны:
let x: 'hello' = 'hello';

// Работает
x = 'hello';
// ...
x = 'howdy';
// Type '"howdy"' is not assignable to type '"hello"'.
// Тип '"howdy"' нельзя назначить типу '"hello"'.
Нет особого смысла иметь переменную, которая может иметь только одно значение. Но комбинируя литералы в объединения, вы можете выразить гораздо более полезную концепцию — например, функции, которые принимают только определенный набор известных значений:
function printText(s: string, alignment: 'left' | 'right' | 'center') {
  // ...
}
printText('Hello, world', 'left');
printText("G'day, mate", 'centre');

// Argument of type '"centre"' is not assignable to parameter of type '"left" | "right" | "center"'.
// Аргумент типа '"centre"' нельзя назначить параметру типа '"left" | "right" | "center"'.
Типы числовых литералов работают так же:
function compare(a: string, b: string): -1 | 0 | 1 {
  return a === b ? 0 : a > b ? 1 : -1;
}
Конечно, вы можете комбинировать их с нелитеральными типами:
interface Options {
  width: number;
}
function configure(x: Options | 'auto') {
  // ...
}
configure({ width: 100 });
configure('auto');
configure('automatic');

// Argument of type '"automatic"' is not assignable to parameter of type 'Options | "auto"'.
// Аргумент типа '"automatic"' нельзя назначить параметру типа 'Options | "auto"'.
Есть еще один вид литералов: boolean литералы. Есть только два типа логических литералов, и, как вы могли догадаться, это true и false. Сам тип boolean на самом деле является просто псевдонимом объединения true | false.

Вывод литералов

Когда вы инициализируете переменную объектом, TypeScript предполагает, что свойства этого объекта могут изменить значения позже. Например, если вы написали такой код:
const obj = { counter: 0 };
if (someCondition) {
  obj.counter = 1;
}
TypeScript не считает, что присвоение 1 полю, которое ранее имело 0, является ошибкой. Другой способ выразить тоже самое это то, что obj.counter должен иметь тип number, а не 0, потому что типы используются для определения поведения как при чтении, так и при записи. То же самое относится и к строкам:
const req = { url: 'https://example.com', method: 'GET' };
handleRequest(req.url, req.method);

// Argument of type 'string' is not assignable to parameter of type '"GET" | "POST"'.
// Аргумент типа 'string' нельзя назначить параметру типа '"GET" | "POST"'.
В приведенном выше примере req.method подразумевается как строка, а не как "GET". Поскольку код можно обработать между созданием req и вызовом handleRequest, который может назначить новую строку, например "GUESS", для req.method, TypeScript считает, что этот код содержит ошибку. Есть два способа решить это.
  • Вы можете изменить вывод, добавив утверждение типа в любом месте:
// Изменение 1:
const req = { url: 'https://example.com', method: 'GET' as 'GET' };

// Изменение 2:
handleRequest(req.url, req.method as 'GET');
Изменение 1 означает: "Я говорю, что req.method всегда имеет литеральный тип "GET"", предотвращая возможное назначение "GUESS" этому полю после этого. Изменение 2 означает "Я знаю, что req.method имеет значение "GET"". Вы можете использовать as const для преобразования всего объекта в литералы типов:
const req = { url: 'https://example.com', method: 'GET' } as const;
handleRequest(req.url, req.method);
Суффикс as const действует как const, но для системы типов, гарантируя, что всем свойствам будет присвоен литеральный тип, а не более общая версия, такая как string или number.

null и undefined

В JavaScript есть два примитивных значения, которые используются для обозначения отсутствия или неинициализации значения: null и undefined. TypeScript имеет два соответствующих типа с соответствующими именами. Поведение этих типов зависит от того, включена ли у вас опция strictNullChecks.

strictNullChecks выключен

Если strictNullChecks выключен, значения, которые могут быть null или undefined, по-прежнему могут быть доступны в обычном режиме, а значения null или undefined могут быть присвоены свойству любого типа. Это похоже на то, как ведут себя языки без проверок на null (например, C#, Java). Отсутствие проверки этих значений, как правило, является основным источником ошибок; мы всегда рекомендуем включать strictNullChecks, если это целесообразно в кодовой базе.

strictNullChecks включен

При включении strictNullChecks, когда значение равно null или undefined, вам нужно будет проверить эти значения, прежде чем использовать методы или свойства для этого значения. Точно так же, как проверка на undefined перед использованием необязательного свойства, мы можем использовать сужение для проверки значений, которые могут быть null:
function doSomething(x: string | null) {
  if (x === null) {
    // …
  } else {
    console.log('Hello, ' + x.toUpperCase());
  }
}

Оператор ненулевого утверждения (Non-null Assertion Operator, постфикс !)

TypeScript также имеет специальный синтаксис для удаления null и undefined из типа без какой-либо явной проверки. Добавление ! после выражения фактически является утверждением того, что значение не является null или undefined:
function liveDangerously(x?: number | null) {
  // No error
  console.log(x!.toFixed());
}
Как и другие утверждения типа, это не меняет поведение вашего кода во время выполнения, поэтому важно использовать только ! когда вы знаете, что значение не может быть null или undefined.

Что такое Enums в TypeScript (Перечисления)?

Перечисления — это функциональность, добавленная TypeScript, которая позволяет описывать значение, которое может быть одной из множества возможных именованных констант. В отличие от большинства возможностей TypeScript, это не дополнение к JavaScript на уровне типов, а нечто, добавленное к языку и среде выполнения.
enum Direction {
  Up,
  Down,
  Left,
  Right,
}

Менее распространенные примитивы

Стоит упомянуть остальные примитивы в JavaScript, представленные в системе типов.

bigint

Начиная с ES2020, в JavaScript есть примитив, используемый для очень больших целых чисел, BigInt:
// Создание значения bigint через функцию BigInt
const oneHundred: bigint = BigInt(100);

// Создание значения BigInt через литеральный синтаксис
const anotherHundred: bigint = 100n;

symbol

В JavaScript есть примитив, используемый для создания глобальной уникальной ссылки с помощью функции Symbol():
const firstName = Symbol('name');
const secondName = Symbol('name');

if (firstName === secondName) {
  // Это условие всегда будет возвращать 'false', поскольку типы 'typeof firstName' и 'typeof secondName' не пересекаются.
}