Типизация функций с помощью TypeScript

год назад·15 мин. на чтение

Туториал по TypeScript - Типизация функций TypeScript

Содержание туториала по TypeScript Функции — это основной строительный блок любого приложения, будь то локальные функции, импортированные из другого модуля или методы класса. Они также являются значениями, и, как и другие значения, в TypeScript есть много способов описать, как можно вызывать функции.

Типизация функций

Самый простой способ типизировать функцию — использовать выражение функционального типа. Эти типы синтаксически похожи на стрелочные функции:
function greeter(fn: (a: string) => void) {
  fn('Hello, World');
}

function printToConsole(s: string) {
  console.log(s);
}

greeter(printToConsole);
Синтаксис (a:string) => void означает "функция с одним параметром a, типа string, который не имеет возвращаемого значения". Как и в случае с определением функции, если тип параметра не указан, он будет иметь тип any. Обратите внимание, что имя параметра является обязательным. Тип функции (string) => void означает "функция с параметром, названным string типа any"! Конечно, мы можем использовать псевдоним типа для обозначения типа функции:
type GreetFunction = (a: string) => void;
function greeter(fn: GreetFunction) {
  // ...
}

Сигнатура вызова (Call Signature)

В JavaScript функции могут не только вызываться, но и иметь свойства. Однако синтаксис выражения функционального типа не позволяет объявлять свойства. Если мы хотим описать что-то вызываемое с помощью свойств, мы можем написать сигнатуру вызова в объектном типе:
type DescribableFunction = {
  description: string;
  (someArg: number): boolean;
};
function doSomething(fn: DescribableFunction) {
  console.log(fn.description + ' returned ' + fn(6));
}
Обратите внимание, что синтаксис немного отличается от выражения функционального типа — используется : между списком параметров и возвращаемым типом, а не =>.

Сигнатура конструктора (Construct Signature)

Функции JavaScript также можно вызывать с помощью оператора new. В TypeScript они считаются конструкторами, потому что они обычно создают новый объект. Вы можете написать сигнатуру конструктора, добавив ключевое слово new перед сигнатурой вызова:
type SomeConstructor = {
  new (s: string): SomeObject;
};
function fn(ctor: SomeConstructor) {
  return new ctor('hello');
}
Некоторые объекты, такие как объект Date в JavaScript, можно вызывать как с оператором new, так и без него. Вы можете произвольно комбинировать сигнатуры вызова и конструктора в одном и том же типе:
interface CallOrConstruct {
  new (s: string): Date;
  (n?: number): number;
}

Функции-дженерики (Generic Functions)

Обычно пишут функцию, в которой типы входных данных связаны с типом выходных данных или где типы двух входных данных каким-то образом связаны. Давайте рассмотрим функцию, которая возвращает первый элемент массива:
function firstElement(arr: any[]) {
  return arr[0];
}
Эта функция выполняет свою работу, но, к сожалению, имеет возвращаемый тип any. Лучше бы функция возвращала тип элемента массива. В TypeScript дженерики используются, когда мы хотим описать соответствие между двумя значениями. Мы делаем это, объявляя параметр типа в сигнатуре функции:
function firstElement<Type>(arr: Type[]): Type | undefined {
  return arr[0];
}
Добавив к этой функции параметр Type и используя его в двух местах, мы создали связь между входными данными функции (массивом) и выходными (возвращаемым значением). Теперь, когда мы ее вызываем, получается более конкретный тип:
// s имеет тип 'string'
const s = firstElement(['a', 'b', 'c']);
// n имеет тип 'number'
const n = firstElement([1, 2, 3]);
// u имеет тип undefined
const u = firstElement([]);

Предположение типа (Inference)

Мы можем использовать несколько параметров типа. Например, самописная версия функции map может выглядеть так:
function map<Input, Output>(
  arr: Input[],
  func: (arg: Input) => Output
): Output[] {
  return arr.map(func);
}

// Параметр 'n' имеет тип 'string'
// 'parsed' имеет тип 'number[]'
const parsed = map(['1', '2', '3'], (n) => parseInt(n));
Обратите внимание, что в приведенном примере TypeScript может сделать вывод относительно типа Input на основе переданного string[], а относительно типа Output на основе возвращаемого number.

Ограничения (constraints)

Ограничение используется для того, чтобы ограничивать типы, которые принимаются параметром типа. Реализуем функцию, возвращающую самое длинное из двух значений. Для этого нам потребуется свойство length, которое будет числом. Мы ограничим параметр типа типом number с помощью ключевого слова extends:
function longest<Type extends { length: number }>(a: Type, b: Type) {
  if (a.length >= b.length) {
    return a;
  } else {
    return b;
  }
}

// longerArray имеет тип 'number[]'
const longerArray = longest([1, 2], [1, 2, 3]);
// longerString имеет тип 'alice' | 'bob'
const longerString = longest('alice', 'bob');
// Ошибка! У чисел нет свойства 'length'
const notOK = longest(10, 100);

// Argument of type 'number' is not assignable to parameter of type '{ length: number; }'.
// Аргумент типа 'number' не может быть присвоен аргументу типа '{ length: number; }'.
В этом примере есть несколько интересных моментов. Мы позволили TypeScript определять возвращаемый тип самого длинного значения. Вывод типа возвращаемого значения также работает с функциями-дженериками. Поскольку мы ограничили Type значением {length: number}, мы смогли получить доступ к свойству .length параметров a и b. Без ограничения типа мы не смогли бы получить доступ к этим свойствам, потому что значения могли быть какого-то другого типа без свойства length. Типы longerArray и longerString были выведены на основе аргументов. Помните, что дженерики — это связывание двух или более значений с одним и тем же типом. Наконец, как мы и хотели, вызов longest(10, 100) ,был отклонен, потому что тип number не имеет свойства .length.

Работа со значениями с ограничениями

Вот распространенная ошибка при работе с ограничениями-дженериками:
function minimumLength<Type extends { length: number }>(
  obj: Type,
  minimum: number
): Type {
  if (obj.length >= minimum) {
    return obj;
  } else {
    return { length: minimum };

    // Type '{ length: number; }' is not assignable to type 'Type'.
    // '{ length: number; }' is assignable to the constraint of type 'Type', but 'Type' could be instantiated with a different subtype of constraint '{ length: number; }'.
  }
}
Может показаться, что с этой функцией все в порядке — Type ограничен до { length: number }, и функция либо возвращает Type, либо значение, соответствующее этому ограничению. Проблема в том, что функция обещает вернуть тот же тип объекта, который был передан, а не просто какой-то объект, соответствующий ограничению. Если бы этот код был работающим, вы могли бы написать код, который не работал бы:
// 'arr' получает значение { length: 6 }
const arr = minimumLength([1, 2, 3], 6);
// и падает, т.к. массив имеет метод 'slice'
// но не возвращаемый объект!
console.log(arr.slice(0));

Определение типа аргументов

TypeScript обычно может вывести предполагаемые аргументы типа в вызове дженерика, но не всегда. Например, вы написали функцию для объединения двух массивов:
function combine<Type>(arr1: Type[], arr2: Type[]): Type[] {
  return arr1.concat(arr2);
}
Обычно было бы ошибкой вызывать эту функцию с несовпадающими массивами:
const arr = combine([1, 2, 3], ['hello']);

// Type 'string' is not assignable to type 'number'.
// Нельзя присвоить тип 'string' типу 'number'.
Однако, если вы намеревались сделать это, вы можете вручную указать Type:
const arr = combine<string | number>([1, 2, 3], ['hello']);

Как написать хорошую функцию-дженерик?

Написание функций-дженериков — это весело, и можно легко увлечься параметрами типа. Наличие слишком большого количества параметров типа или использование ограничений там, где они не нужны, может сделать вывод менее успешным, вызывая разочарование у пользователей функции.

Используйте параметры типа без ограничений

Вот два способа написания функции, которые кажутся похожими:
function firstElement1<Type>(arr: Type[]) {
  return arr[0];
}

function firstElement2<Type extends any[]>(arr: Type) {
  return arr[0];
}

// a: number (хорошо)
const a = firstElement1([1, 2, 3]);
// b: any (плохо)
const b = firstElement2([1, 2, 3]);
На первый взгляд они могут показаться идентичными, но firstElement1 — гораздо лучший способ написать эту функцию. Предполагаемый тип возвращаемого значения — Type, но предполагаемый возвращаемый тип firstElement2any, поскольку TypeScript должен разрешать выражение arr[0] с использованием типа ограничения, а не «ждать» элемент во время вызова. Правило: по возможности используйте сам параметр типа, а не ограничивайте его.

Используйте меньше параметров типа

Вот еще пара похожих функций:
function filter1<Type>(arr: Type[], func: (arg: Type) => boolean): Type[] {
  return arr.filter(func);
}

function filter2<Type, Func extends (arg: Type) => boolean>(
  arr: Type[],
  func: Func
): Type[] {
  return arr.filter(func);
}
Мы создали параметр типа Func, который не связывает два значения. Это всегда красный флаг, потому что это означает, что вызывающие программы, желающие указать аргументы типа, должны вручную указать дополнительный аргумент типа без всякой причины. Func ничего не делает, но затрудняет чтение и осмысление функции! Правило: всегда используйте как можно меньше параметров типа

Параметры типа должны появляться дважды

Иногда мы забываем, что функции не обязательно быть дженериком:
function greet<Str extends string>(s: Str) {
  console.log('Hello, ' + s);
}

greet('world');
Мы могли бы написать более простую версию:
function greet(s: string) {
  console.log('Hello, ' + s);
}
Помните, что параметры типа предназначены для связи типов нескольких значений. Если параметр типа используется только один раз в сигнатуре функции, он ни с чем не связан. Правило: если параметр типа появляется только в одном месте, серьезно подумайте, действительно ли он вам нужен.

Необязательные параметры

Функции в JavaScript часто принимают переменное количество аргументов. Например, метод toFixed для значений типа number принимает необязательное количество цифр:
function f(n: number) {
  console.log(n.toFixed()); // 0 аргументов
  console.log(n.toFixed(3)); // 1 аргумент
}
Мы можем смоделировать это в TypeScript, пометив параметр как необязательный с помощью ?:
function f(x?: number) {
  // ...
}
f(); // OK
f(10); // OK
Хотя параметр указан как типа number, параметр x на самом деле будет иметь тип number | undefined, потому что неуказанные параметры в JavaScript получают значение undefined. Вы также можете указать параметр по умолчанию:
function f(x = 10) {
  // ...
}
Теперь в теле f, x будет иметь тип number, потому что любой неопределенный аргумент будет заменен на 10. Обратите внимание, что, когда параметр является необязательным, вызывающая сторона всегда может передать значение undefined, так как это просто имитирует «отсутствующий» аргумент:
declare function f(x?: number): void;

// все вызовы допустимы
f();
f(10);
f(undefined);

Необязательные параметры в функциях обратного вызова

Мы уже знаем о необязательных параметрах и типизации функциональных выражений. Очень легко сделать следующие ошибки при написании функций, которые вызывают колбеки:
function myForEach(arr: any[], callback: (arg: any, index?: number) => void) {
  for (let i = 0; i < arr.length; i++) {
    callback(arr[i], i);
  }
}
Обычно при написании index? в качестве необязательного параметр разработчики хотят, чтобы оба этих вызова валидными:
myForEach([1, 2, 3], (a) => console.log(a));
myForEach([1, 2, 3], (a, i) => console.log(a, i));
На самом деле это означает, что колбек может быть вызван с одним аргументом. Другими словами, в определении функции сказано, что реализация может выглядеть так:
function myForEach(arr: any[], callback: (arg: any, index?: number) => void) {
  for (let i = 0; i < arr.length; i++) {
    callback(arr[i]);
  }
}
В свою очередь, TypeScript будет применять это значение и выдавать ошибки:
myForEach([1, 2, 3], (a, i) => {
  console.log(i.toFixed());
  // Object is possibly 'undefined'.
  // Объект, возможно, 'undefined'.
});
В JavaScript, если вы вызываете функцию с бОльшим количеством аргументов, лишние аргументы просто игнорируются. TypeScript ведет себя точно так же. Функции с меньшим количеством параметров (одного и того же типа) всегда могут заменить функции с бОльшим количеством параметров. При типизации функции для колбека никогда делайте параметр необязательным, если вы не собираетесь вызывать функцию без передачи этого аргумента.

Перегрузка функций (Function Overloads)

Некоторые функции JavaScript можно вызывать с различным числом аргументов и типами. Например, вы можете написать функцию для создания даты Date, которая принимает отметку времени (один аргумент) или спецификацию месяц/день/год (три аргумента). В TypeScript мы можем указать функцию, которую можно вызывать по-разному, написав сигнатуры перегрузки. Для этого нужно написать несколько сигнатур функции (обычно две или более), а затем тело функции:
function makeDate(timestamp: number): Date;
function makeDate(m: number, d: number, y: number): Date;
function makeDate(mOrTimestamp: number, d?: number, y?: number): Date {
  if (d !== undefined && y !== undefined) {
    return new Date(y, mOrTimestamp, d);
  } else {
    return new Date(mOrTimestamp);
  }
}
const d1 = makeDate(12345678);
const d2 = makeDate(5, 5, 5);
const d3 = makeDate(1, 3);

// No overload expects 2 arguments, but overloads do exist that expect either 1 or 3 arguments.
// Нет перегрузки, ожидающей 2 аргумента, но есть перегрузки, которые ожидают либо 1, либо 3 аргумента.
В этом примере мы написали две перегрузки: одну, принимающую один аргумент, и другую, принимающую три аргумента. Эти первые две сигнатуры называются сигнатурами перегрузки. Затем мы написали реализацию функции с совместимой сигнатурой. Функции имеют сигнатуру реализации, но эту сигнатуру нельзя вызвать напрямую. Несмотря на то, что мы написали функцию с двумя необязательными параметрами после обязательного, ее нельзя вызвать с двумя параметрами!

Сигнатуры перегрузки и сигнатура реализации

Это распространенный источник путаницы. Часто люди пишут такой код и не понимают, почему возникает ошибка:
function fn(x: string): void;
function fn() {
  // ...
}
// Expected to be able to call with zero arguments
// Ожидается, что можно вызвать без аргументов
fn();
// Expected 1 arguments, but got 0.
// Ожидается 1 аргумент, но получено 0.
Сигнатура, используемая для написания тела функции, не может быть использована извне. Сигнатура реализации не видна снаружи. При написании перегруженной функции вы всегда должны иметь две или более сигнатуры над реализацией функции. Сигнатура реализации также должна быть совместима с сигнатурами перегрузки. Например, в этих функциях есть ошибки, потому что сигнатура реализации не соответствует перегруженным версиям должным образом:
function fn(x: boolean): void;
// Неправильный аргумент функции
function fn(x: string): void;
// This overload signature is not compatible with its implementation signature.
// Эта перегрузка сигнатуры не совместима с сигнатурой реализации.
function fn(x: boolean) {}
function fn(x: string): string;
// Неверный возвращаемый тип
function fn(x: number): boolean;
// This overload signature is not compatible with its implementation signature.
// Cигнатура перегрузки не совместима с сигнатурой реализации.
function fn(x: string | number) {
  return 'oops';
}

Как написать хорошую перегрузку

Как и в случае с дженериками, при использовании перегруженных функций следует соблюдать несколько рекомендаций. Следование этим принципам упростит вызов вашей функции, ее понимание и реализацию. Рассмотрим функцию, которая возвращает длину строки или массива:
function len(s: string): number;
function len(arr: any[]): number;
function len(x: any) {
  return x.length;
}
С этой функцией все в порядке; мы можем вызывать ее со строками или массивами. Однако мы не можем вызвать ее со значением, которое может быть строкой или массивом, потому что TypeScript может разрешить вызов функции только для одной перегрузки:
len(''); // OK
len([0]); // OK
len(Math.random() > 0.5 ? 'hello' : [0]);
// No overload matches this call.
//  Overload 1 of 2, '(s: string): number', gave the following error.
//    Argument of type 'number[] | "hello"' is not assignable to parameter of type 'string'.
//      Type 'number[]' is not assignable to type 'string'.
//  Overload 2 of 2, '(arr: any[]): number', gave the following error.
//    Argument of type 'number[] | "hello"' is not assignable to parameter of type 'any[]'.
//     Type 'string' is not assignable to type 'any[]'.
Поскольку обе перегрузки имеют одинаковое количество аргументов и один и тот же тип возвращаемого значения, вместо этого мы можем написать не перегруженную версию функции:
function len(x: any[] | string) {
  return x.length;
}
Так гораздо лучше! Ее можно вызывать со значением любого типа, и в качестве дополнительного бонуса нам не нужно вычислять правильную сигнатуру реализации. Всегда предпочитайте параметры с объединением вместо перегрузок, когда это возможно.

Определение this в функциях

С помощью анализа потока кода TypeScript сделает вывод о том, чем является this:
const user = {
  id: 123,

  admin: false,
  becomeAdmin: function () {
    this.admin = true;
  },
};
TypeScript понимает, что функция user.becomeAdmin имеет соответствующий this, который является объектом user извне. В спецификации JavaScript указано, что у вас не может быть параметра с именем this, TypeScript использует это, чтобы можно было объявить тип для this в теле функции.
interface DB {
  filterUsers(filter: (this: User) => boolean): User[];
}

const db = getDB();
const admins = db.filterUsers(function (this: User) {
  return this.admin;
});
Этот шаблон распространен в API обратного вызова, где другой объект обычно управляет вызовом вашей функции. Обратите внимание, что вам нужно использовать function, а не стрелочные функции, чтобы получить такое поведение:
interface DB {
  filterUsers(filter: (this: User) => boolean): User[];
}

const db = getDB();
const admins = db.filterUsers(() => this.admin);
// The containing arrow function captures the global value of 'this'.
// Стрелочная функция захватывает глобальный `this`.

// Element implicitly has an 'any' type because type 'typeof globalThis' has no index signature.
// Элемент неявно имеет тип 'any' т.к. тип 'typeof globalThis' не имеет сигнатуры.

Другие типы, о которых следует знать

Есть несколько дополнительных типов, которые часто появляются при работе с типами функций. Как и все типы, вы можете использовать их везде, но они особенно актуальны в функциях.

void

void представляет возвращаемое значение функций, которые не возвращают значения. Этот тип выведется из функции, когда функция не имеет операторов return или не возвращает никакого явного значения из этих операторов return:
// Выведенный тип возвращаемого результата void
function noop() {
  return;
}
В JavaScript функция, которая не возвращает никакого значения, неявно вернет значение undefined. Однако void и undefined — это не одно и то же в TypeScript. Дополнительные подробности приведены в конце этой главы.

object

Специальный тип object относится к любому значению, не являющемуся примитивом (string, number, bigint, boolean, symbol, null или undefined). Это отличается от типа пустого объекта { }, а также отличается от глобального типа Object. Очень вероятно, что вы никогда не будете использовать Object. object не является Object. Всегда используйте object! Обратите внимание, что в JavaScript функции являются объектами: у них есть свойства, есть Object.prototype в своей цепочке прототипов, являются instanceof Object, вы можете вызывать для них Object.keys и т.д. По этой причине типы функций считаются object в TypeScript.

unknown

Тип unknown представляет любое значение. Это похоже на тип any, но безопаснее, потому что нельзя ничего делать с неизвестным значением:
function f1(a: any) {
  a.b(); // OK
}
function f2(a: unknown) {
  a.b();
  // Object is of type 'unknown'.
  // Объект типа 'unknown'.
}
Это полезно при описании типов функций, потому что вы можете описывать функции, которые принимают любое значение, не имея значений any в теле вашей функции. И наоборот, вы можете описать функцию, которая возвращает значение типа unknown:
function safeParse(s: string): unknown {
  return JSON.parse(s);
}

// Нужно быть осторожным с 'obj'!
const obj = safeParse(someRandomString);

never

Некоторые функции никогда не возвращают значение:
function fail(msg: string): never {
  throw new Error(msg);
}
Тип never представляет значения, которые никогда не возвращаются. В возвращаемом типе это означает, что функция выдает исключение или завершает выполнение программы. never появляется, когда TypeScript определяет, что в объединении ничего не осталось.
function fn(x: string | number) {
  if (typeof x === 'string') {
    // что-то делаем
  } else if (typeof x === 'number') {
    // что-то делаем еще
  } else {
    x; // имеет тип 'never'!
  }
}

Function

Глобальный тип Function описывает такие свойства, как bind, call, apply и другие, присутствующие во всех значениях функций в JavaScript. Он также имеет специальное свойство, позволяющее вызывать значения типа Function — такие вызовы возвращают any:
function doSomething(f: Function) {
  return f(1, 2, 3);
}
Это нетипизированный вызов функции, и его обычно лучше избегать из-за небезопасного возвращаемого типа any. Если вам нужно принять произвольную функцию без ее вызова, тип () => void, как правило, безопаснее.

Остальные параметры и аргументы (rest)

Остальные параметры

В дополнение к использованию необязательных параметров или перегрузок функций, которые могут принимать множество фиксированных аргументов, мы также можем определить функции, которые принимают неограниченное количество аргументов, используя синтаксис остальных параметров (rest parameters). Остальные параметры появляется после всех остальных параметров и используют синтаксис ...:
function multiply(n: number, ...m: number[]) {
  return m.map((x) => n * x);
}
// 'a' имеет значение [10, 20, 30, 40]
const a = multiply(10, 1, 2, 3, 4);
В TypeScript аннотация типа для этих параметров неявно является any[] вместо any, и любая указанная аннотация типа должна иметь форму Array<T> или T[] или тип кортежа (о котором мы узнаем позже).

Остальные аргументы

И наоборот, мы можем предоставить переменное количество аргументов из массива, используя синтаксис распыления (spread syntax). Например, метод массивов push принимает любое количество аргументов:
const arr1 = [1, 2, 3];
const arr2 = [4, 5, 6];
arr1.push(...arr2);
Обратите внимание, что в целом TypeScript не предполагает, что массивы иммутабельные. Это может привести к неожиданному поведению:
// Предполагаемый тип number[] - массив с двумя или более числами,
// не конкретно с двумя числами
const args = [8, 5];
const angle = Math.atan2(...args);
// A spread argument must either have a tuple type or be passed to a rest parameter.
// Распыленный аргумент должен быть типом кортежа или отправлен как остальные параметры (rest)
Лучшее решение для этой ситуации зависит от вашего кода, но в целом const является наиболее простым решением:
// Представлен как кортеж длины 2
const args = [8, 5] as const;
// OK
const angle = Math.atan2(...args);
Использование остальных аргументов может потребовать включения downlevelIteration если старые среды выполнения являются целевыми.

Деструктуризация параметров (Parameter Destructuring)

Вы можете использовать деструктуризацию параметров для удобной распаковки объектов, предоставленных в качестве аргумента, в одну или несколько локальных переменных в теле функции. В JavaScript это выглядит так:
function sum({ a, b, c }) {
  console.log(a + b + c);
}
sum({ a: 10, b: 3, c: 9 });
Аннотация типа для объекта идет после синтаксиса деструктурирования:
function sum({ a, b, c }: { a: number; b: number; c: number }) {
  console.log(a + b + c);
}
Это может выглядеть немного многословно, но здесь вы также можете использовать именованный тип:
type ABC = { a: number; b: number; c: number };
function sum({ a, b, c }: ABC) {
  console.log(a + b + c);
}

Присваиваемость функций

Возвращаемый тип void

Возвращаемый тип void для функций может привести к необычному, но ожидаемому поведению. Контекстуальная типизация (contextual typing) с возвращаемым типом void не заставляет функции ничего не возвращать. Иными словами, По-другому можно сказать, что функция с возвращаемым типом void (type vf = () => void), при реализации может вернуть любое другое значение, но оно будет проигнорировано. Таким образом, допустимы следующие реализации () => void:
type voidFunc = () => void;

const f1: voidFunc = () => {
  return true;
};

const f2: voidFunc = () => true;

const f3: voidFunc = function () {
  return true;
};
И когда возвращаемое значение одной из этих функций будет присвоено другой переменной, оно сохранит тип void:
const v1 = f1();

const v2 = f2();

const v3 = f3();
Поэтому следующий код валидный, несмотря на то, что Array.prototype.push возвращает number, а метод Array.prototype.forEach ожидает функцию с возвращаемым типом void.
const src = [1, 2, 3];
const dst = [0];

src.forEach((el) => dist.push(el));
Есть еще один особый случай, о котором следует знать, когда литеральное определение функции имеет возвращаемый тип void, эта функция не должна ничего возвращать.
function f2(): void {
  // @ts-expect-error
  return true;
}

const f3 = function (): void {
  // @ts-expect-error
  return true;
};

Типы TypeScript для повседневного использования

год назад·14 мин. на чтение

Туториал по TypeScript - Типы TypeScript, которые используются наиболее часто

Содержание туториала по TypeScript В этой главе мы рассмотрим некоторые из наиболее распространенных типов, которые вы найдете в JavaScript коде, и объясним соответствующие способы описания этих типов в TypeScript. Это не исчерпывающий список, и в следующих главах будут описаны другие способы именования и использования других типов. Кроме того, типы могут появляться не только в аннотациях, но и во многих других местах. Когда мы узнаем о самих типах, мы также узнаем о местах, где мы можем ссылаться на эти типы для формирования новых конструкций. Мы начнем с обзора самых основных и распространенных типов, с которыми вы можете столкнуться при написании кода JavaScript или TypeScript. Позже они сформируют основные строительные блоки для более сложных типов.

Примитивы: string, number, boolean

В JavaScript есть три очень часто используемых примитива: string, number и boolean. У каждого есть соответствующий тип в TypeScript. Как и следовало ожидать, это те же самые имена, которые вы увидели бы, если бы использовали оператор JavaScript typeof для значений этих типов:
  • string представляет строковые значения, такие как "Hello, world"
  • number для чисел вроде 42. В JavaScript нет различий между целочисленными значениями и значениями с плавающей точкой, поэтому нет эквивалента int или float — все просто number
  • boolean для двух значений true и false
Типы String, Number и Boolean (начинающиеся с заглавных букв) допустимы, но относятся к некоторым специальным встроенным типам, которые очень редко встречаются в коде. Всегда используйте типы string, number или boolean.

Массивы

Чтобы указать тип массива, например [1, 2, 3], вы можете использовать синтаксис number[]; этот синтаксис работает для любого типа (например, string[] — это массив строк и т.д.). Вы также можете встретить синтаксис Array<number>, что означает то же самое. Мы узнаем больше о синтаксисе T<U>, когда будем рассматривать дженерики (generics). Обратите внимание, что [number] — означает другой тип, а именно кортеж (tuple).

any

TypeScript также имеет специальный тип any, который вы можете использовать всякий раз, когда вы не хотите, чтобы определенное значение вызывало ошибки проверки типов. Когда значение имеет тип any, вы можете получить доступ к любым его свойствам (которые, в свою очередь, будут иметь тип any), вызвать его как функцию, присвоить ему значения любого типа или почти все что угодно. Это валидный синтаксис:
let obj: any = { x: 0 };
// Ни одна из следующих строк кода не вызовет ошибок компилятора.
// Использование any отключает все дальнейшие проверки типов и предполагается, что
// вы знаете эти сценарии лучше, чем TypeScript.
obj.foo();
obj();
obj.bar = 100;
obj = 'hello';
const n: number = obj;
Тип any полезен, когда вы не хотите записывать длинный тип только для того, чтобы убедить TypeScript в том, что конкретная строка кода в порядке.

noImplicitAny

Когда вы не указываете тип и TypeScript не может вывести его из контекста, компилятор обычно по умолчанию использует тип any. Обычно этого следует избегать, потому что тип any не проверяется. Используйте флаг компилятора noImplicitAny, чтобы пометить любое неявное значение any как ошибку.

Аннотации типов переменных

Когда вы объявляете переменную с помощью const, var или let, вы можете дополнительно добавить аннотацию типа, чтобы явно указать тип переменной:
let myName: string = 'Alice';
TypeScript не использует объявления в стиле «типы слева», такие как int x = 0; Аннотации типа всегда будут находится после. Однако в большинстве случаев в этом нет необходимости. Везде, где это возможно, TypeScript пытается автоматически определить типы в вашем коде. Например, тип переменной выводится на основе типа ее инициализатора:
// Аннотации типа не требуются — тип 'myName' выводится как 'string'
let myName = 'Alice';
По большей части вам не нужно явно изучать правила вывода. Если вы только начинаете, попробуйте использовать меньше аннотаций типов — вы удивитесь, как мало нужно для TypeScript, чтобы он понимал, что происходит.

Функции

Функции — это основное средство для работы с данными в JavaScript. TypeScript позволяет указывать типы как входных, так и выходных значений функций.

Аннотации типов параметров

Когда вы объявляете функцию, вы можете добавить аннотации типа после каждого параметра, чтобы объявить, какие типы параметров принимает функция. Аннотации типа параметра идут после имени параметра:
// Аннотация типа параметра
function greet(name: string) {
  console.log('Hello, ' + name.toUpperCase() + '!!');
}
Когда параметр имеет аннотацию типа, будут проверены аргументы этой функции:
// При вызове возникнет ошибка времени выполнения
greet(42);

// Argument of type 'number' is not assignable to parameter of type 'string'.
Даже если вы не указали аннотации типов для параметров, TypeScript все равно проверит, что вы передали правильное количество аргументов.

Аннотации типа возвращаемого значения

Вы также можете добавить аннотации типа возвращаемого значения. Аннотации типа возвращаемого значения добавляется после списка параметров:
function getFavoriteNumber(): number {
  return 26;
}
Подобно аннотациям типа переменной, вам обычно не нужна аннотация типа возвращаемого значения, потому что TypeScript будет делать вывод о типе возвращаемого значения функции на основе ее оператора return. Аннотация типа в приведенном выше примере ничего не меняет. Некоторые кодовые базы явно указывают тип возвращаемого значения для документирования, для предотвращения случайных изменений или просто для личных предпочтений.

Анонимные функции

Анонимные функции немного отличаются от объявлений обычных функций. Когда функция появляется в месте, где TypeScript может определить, как она будет вызываться, параметрам этой функции автоматически присваиваются типы. Например:
// Здесь нет аннотаций типов, но TypeScript может обнаружить ошибку
const names = ['Alice', 'Bob', 'Eve'];

// Определение типа на основе контекста
names.forEach(function (s) {
  console.log(s.toUppercase());

  // Property 'toUppercase' does not exist on type 'string'. Did you mean 'toUpperCase'?
});

// Определение типа на основе контекста вызова функции также работает и для стрелочных функций
names.forEach((s) => {
  console.log(s.toUppercase());

  // Property 'toUppercase' does not exist on type 'string'. Did you mean 'toUpperCase'?
});
Несмотря на то, что у параметра s не было аннотации типа, TypeScript использовал типы функции forEach вместе с предполагаемым типом массива, чтобы определить тип, который будет иметь s. Этот процесс называется контекстной типизацией, потому что контекст, в котором возникла функция, сообщает, какой тип она должна иметь. Как и в случае с правилами вывода, вам не нужно явно знать, как это происходит, но понимание того, что это действительно происходит, может помочь вам заметить, когда аннотации типов не нужны. Позже мы увидим больше примеров того, как контекст, в котором встречается значение, может повлиять на его тип.

Типы объектов

Помимо примитивов, наиболее распространенным типом, с которым вы столкнетесь, является объект. Это относится к любому значению JavaScript со свойствами. Чтобы определить тип объекта, мы просто перечисляем его свойства и их типы. Например, вот функция, которая принимает объект точку:
// Аннотация типа параметра является типом объекта
function printCoord(pt: { x: number; y: number }) {
  console.log("The coordinate's x value is " + pt.x);
  console.log("The coordinate's y value is " + pt.y);
}
printCoord({ x: 3, y: 7 });
Здесь мы типизировали параметр двумя свойствами — x и y — оба типа number. Вы можете использовать , или ; для разделения свойств, а последний разделитель необязателен. Указание типа каждого свойства также необязательно. Если вы не укажете тип, он будет считаться any.

Необязательные свойства

Типы объектов также могут указывать, что некоторые или все их свойства являются необязательными. Для этого добавьте ? после имени свойства:
function printName(obj: { first: string; last?: string }) {
  // ...
}
// Следующие вызовы не вызовут ошибок
printName({ first: 'Bob' });
printName({ first: 'Alice', last: 'Alisson' });
В JavaScript, если вы обращаетесь к несуществующему свойству, вы получите значение undefined, а не ошибку времени выполнения. Из-за этого, когда вы читаете из необязательного свойства, вам придется проверять его на undefined перед его использованием.
function printName(obj: { first: string; last?: string }) {
  // Ошибка, если obj.last не предоставлен:
  console.log(obj.last.toUpperCase());
Object is possibly 'undefined'.
  if (obj.last !== undefined) {
    // OK
    console.log(obj.last.toUpperCase());
  }

  // Безопасная альтернатива с использованием современного синтаксиса JavaScript:
  console.log(obj.last?.toUpperCase());
}

Объединение типов (Unions)

Система типов TypeScript позволяет вам создавать новые типы из существующих, используя большое количество операторов. Теперь, когда мы знаем, как писать несколько типов, пора начать комбинировать их интересными способами.

Определение объединенного типа

Первый способ комбинирования типов, который вы встретить - это объединение типов. Объединение типов - это тип, сформированный из двух или более других типов, представляющих значения, которые могут быть любым из этих типов. Давайте напишем функцию, которая может работать со строками или числами:
function printId(id: number | string) {
  console.log('Your ID is: ' + id);
}
// OK
printId(101);
// OK
printId('202');
// Ошибка
printId({ myID: 22342 });

// Argument of type '{ myID: number; }' is not assignable to parameter of type 'string | number'.

Работа с объединенными типами

TypeScript разрешит операцию только в том случае, если она действительна для каждого члена объединения. Например, если у вас есть объединение string | number, вы не можете использовать методы, доступные только для string:
function printId(id: number | string) {
  console.log(id.toUpperCase());

  // Property 'toUpperCase' does not exist on type 'string | number'.
  // Property 'toUpperCase' does not exist on type 'number'.
}
Решение состоит в том, чтобы сузить объединение с помощью кода, как в JavaScript без аннотаций типов. Сужение происходит, когда TypeScript может определить более конкретный тип для значения на основе структуры кода. Например, TypeScript знает, что только строковое значение будет иметь значение "string" при применении оператора typeof:
function printId(id: number | string) {
  if (typeof id === 'string') {
    // Здесь id имеет тип 'string'
    console.log(id.toUpperCase());
  } else {
    // Здесь id имеет тип 'number'
    console.log(id);
  }
}
Другой пример — использование такой функции, как Array.isArray:
function welcomePeople(x: string[] | string) {
  if (Array.isArray(x)) {
    // Здесь: 'x' это 'string[]'
    console.log('Hello, ' + x.join(' and '));
  } else {
    // Здесь: 'x' это 'string'
    console.log('Welcome lone traveler ' + x);
  }
}
Обратите внимание, что в ветке else нам не нужно делать ничего особенного — если x не является string[], то это должна быть строка. Иногда у вас будет объединение, в котором все члены имеют что-то общее. Например, и массивы, и строки имеют метод slice. Если у каждого члена объединения есть общее свойство, вы можете использовать это свойство без сужения:
// Возвращаемый тип определяется из number[] | string
function getFirstThree(x: number[] | string) {
  return x.slice(0, 3);
}
Может сбивать с толку тот факт, что объединение типов имеет пересечение свойств этих типов. Это не случайно — название union происходит из теории типов. Объединение number | string состоит из объединения значений каждого типа. Обратите внимание, что для двух множеств с соответствующими фактами о каждом множестве к объединению самих множеств применимо только пересечение этих фактов. Например, если бы у нас была комната с высокими людьми в шляпах и другая комната с говорящими по-испански в шляпах, после объединения этих комнат единственное, что мы знаем о каждом человеке, это то, что он должен быть в шляпе.

Псевдонимы типов (алиасы, aliases)

Мы использовали типы объектов и типы объединения, записывая их непосредственно в аннотациях типов. Это удобно, но часто хочется использовать один и тот же тип более одного раза и ссылаться на него по одному имени. Псевдоним типа — это именно то, что является именем для любого типа. Синтаксис псевдонима типа:
type Point = {
  x: number;
  y: number;
};

// Тоже самое как и в прошлом примере
function printCoord(pt: Point) {
  console.log("The coordinate's x value is " + pt.x);
  console.log("The coordinate's y value is " + pt.y);
}

printCoord({ x: 100, y: 100 });
Вы можете использовать псевдоним типа, чтобы дать имя любому типу, а не только объектному типу. Например, псевдоним типа может включать тип объединения:
type ID = number | string;
Обратите внимание, что псевдонимы — это всего лишь псевдонимы — вы не можете использовать псевдонимы типов для создания разных/отличных «версий» одного и того же типа. Другими словами, этот код может выглядеть недопустимым, но в соответствии с TypeScript это нормально, потому что оба типа являются псевдонимами для одного и того же типа:
type UserInputSanitizedString = string;

function sanitizeInput(str: string): UserInputSanitizedString {
  return sanitize(str);
}

// Значение типа UserInputSanitizedString
let userInput = sanitizeInput(getInput());

// может также присваивать строку
userInput = 'new input';

Интерфейсы

Объявление интерфейса — это еще один способ объявить тип объекта:
interface Point {
  x: number;
  y: number;
}

function printCoord(pt: Point) {
  console.log("The coordinate's x value is " + pt.x);
  console.log("The coordinate's y value is " + pt.y);
}

printCoord({ x: 100, y: 100 });
Точно так же, как когда мы использовали псевдоним типа выше, пример работает так же, как если бы мы использовали анонимный тип объекта. TypeScript заботится только о структуре значения, которое мы передали в printCoord, — то, что оно имеет ожидаемые свойства. Занимаясь только структурой и возможностями типов, мы называем TypeScript структурно типизированной (structurally typed) системой типов.

Различия между псевдонимами и интерфейсами

Псевдонимы типов и интерфейсы очень похожи, и во многих случаях вы можете свободно выбирать между ними. Почти все возможности интерфейса доступны в типе, ключевое отличие состоит в том, что тип нельзя повторно открыть для добавления новых свойств по сравнению с интерфейсом, который всегда расширяем. Расширение интерфейса:
interface Animal {
  name: string;
}

interface Bear extends Animal {
  honey: boolean;
}

const bear = getBear();
bear.name;
bear.honey;
Расширение типа через пересечения:
type Animal = {
  name: string;
};

type Bear = Animal & {
  honey: boolean;
};

const bear = getBear();
bear.name;
bear.honey;
Добавление новых полей в существующий интерфейс:
interface Window {
  title: string;
}

interface Window {
  ts: TypeScriptAPI;
}

const src = 'const a = "Hello World"';
window.ts.transpileModule(src, {});
Тип нельзя изменить после создания:
type Window = {
  title: string;
};

type Window = {
  ts: TypeScriptAPI;
};

// Error: Duplicate identifier 'Window'
Вы узнаете больше об этих понятиях в следующих главах, так что не беспокойтесь, если вы не сразу все поймете. По большей части вы можете выбирать на основе личных предпочтений, и TypeScript сообщит вам, нужно ли ему что-то. В общем, используйте интерфейс, пока вам не понадобятся возможности типа.

Утверждения типа (Type Assertions)

Иногда у вас будет информация о типе значения, о котором TypeScript не может узнать. Например, если вы используете document.getElementById, TypeScript знает только, что это вернет какой-то HTMLElement, но вы можете знать, что на вашей странице всегда будет HTMLCanvasElement с заданным идентификатором. В этой ситуации вы можете использовать утверждение типа, чтобы указать более конкретный тип:
const myCanvas = document.getElementById('main_canvas') as HTMLCanvasElement;
Подобно аннотации типа, утверждения типа удаляются компилятором и не влияют на поведение вашего кода во время выполнения. Вы также можете использовать синтаксис угловых скобок (кроме случаев, когда код находится в файле .tsx), что эквивалентно:
const myCanvas = <HTMLCanvasElement>document.getElementById('main_canvas');
Напоминание: поскольку утверждения типа удаляются во время компиляции, проверка во время выполнения не связана с утверждением типа. Не будет сгенерировано исключение или ноль, если утверждение типа неверно. TypeScript допускает только утверждения типа, которые преобразуются в более конкретную или менее конкретную версию типа. Это правило предотвращает «невозможные» приведения, такие как:
const x = 'hello' as number;

// Conversion of type 'string' to type 'number' may be a mistake because neither type sufficiently overlaps with the other. If this was intentional, convert the expression to 'unknown' first.
Иногда это правило может быть слишком консервативным и запрещать более сложные приведения, которые могут быть действительными. Если это произойдет, вы можете использовать два утверждения, сначала для any (или unknown, о котором мы расскажем позже), затем для нужного типа:
const a = expr as any as T;

Литеральные типы (Literal Types)

В дополнение к общим типам string и number мы можем ссылаться на определенные строки и числа в позициях типа. Один из способов подумать об этом — рассмотреть, как в JavaScript существуют различные способы объявления переменных. И var, и let позволяют изменять содержимое переменной, а const — нет. Это отражено в том, как TypeScript создает типы для литералов.
let changingString = 'Hello World';
changingString = 'Olá Mundo';
// Поскольку `changingString` может представлять любую возможную строку, именно так TypeScript описывает ее в системе типов

const constantString = 'Hello World';
// Поскольку `constantString` может представлять только 1 возможную строку, она имеет буквальное представление типа.
Сами по себе литеральные типы не очень ценны:
let x: 'hello' = 'hello';
// OK
x = 'hello';
// ...
x = 'howdy';
// Type '"howdy"' is not assignable to type '"hello"'.
Нет особого смысла иметь переменную, которая может иметь только одно значение! Но комбинируя литералы в объединения, вы можете выразить гораздо более полезную концепцию — например, функции, которые принимают только определенный набор известных значений:
function printText(s: string, alignment: 'left' | 'right' | 'center') {
  // ...
}
printText('Hello, world', 'left');
printText("G'day, mate", 'centre');

// Argument of type '"centre"' is not assignable to parameter of type '"left" | "right" | "center"'.
Типы числовых литералов работают так же:
function compare(a: string, b: string): -1 | 0 | 1 {
  return a === b ? 0 : a > b ? 1 : -1;
}
Конечно, вы можете комбинировать их с нелитеральными типами:
interface Options {
  width: number;
}
function configure(x: Options | 'auto') {
  // ...
}
configure({ width: 100 });
configure('auto');
configure('automatic');

// Argument of type '"automatic"' is not assignable to parameter of type 'Options | "auto"'.
Есть еще один вид литералов: boolean литералы. Есть только два типа логических литералов, и, как вы могли догадаться, это true и false. Сам тип boolean на самом деле является просто псевдонимом объединения true | false.

Вывод литералов

Когда вы инициализируете переменную объектом, TypeScript предполагает, что свойства этого объекта могут изменить значения позже. Например, если вы написали такой код:
const obj = { counter: 0 };
if (someCondition) {
  obj.counter = 1;
}
TypeScript не считает, что присвоение 1 полю, которое ранее имело 0, является ошибкой. Другой способ выразить тоже самое это то, что obj.counter должен иметь тип number, а не 0, потому что типы используются для определения поведения как при чтении, так и при записи. То же самое относится и к строкам:
const req = { url: 'https://example.com', method: 'GET' };
handleRequest(req.url, req.method);

// Argument of type 'string' is not assignable to parameter of type '"GET" | "POST"'.
В приведенном выше примере req.method подразумевается как строка, а не как "GET". Поскольку код можно обработать между созданием req и вызовом handleRequest, который может назначить новую строку, например "GUESS", для req.method, TypeScript считает, что этот код содержит ошибку. Есть два способа решить это.
  • Вы можете изменить вывод, добавив утверждение типа в любом месте:
// Изменение 1:
const req = { url: 'https://example.com', method: 'GET' as 'GET' };
// Изменение 2:
handleRequest(req.url, req.method as 'GET');
Изменение 1 означает: "Я говорю, что req.method всегда имеет литеральный тип "GET"", предотвращая возможное назначение "GUESS" этому полю после этого. Изменение 2 означает "Я знаю, что req.method имеет значение "GET"". Вы можете использовать as const для преобразования всего объекта в литералы типов:
const req = { url: 'https://example.com', method: 'GET' } as const;
handleRequest(req.url, req.method);
Суффикс as const действует как const, но для системы типов, гарантируя, что всем свойствам будет присвоен литеральный тип, а не более общая версия, такая как string или number.

null и undefined

В JavaScript есть два примитивных значения, которые используются для обозначения отсутствия или неинициализации значения: null и undefined. TypeScript имеет два соответствующих типа с соответствующими именами. Поведение этих типов зависит от того, включена ли у вас опция strictNullChecks.

strictNullChecks выключен

Если strictNullChecks выключен, значения, которые могут быть null или undefined, по-прежнему могут быть доступны в обычном режиме, а значения null или undefined могут быть присвоены свойству любого типа. Это похоже на то, как ведут себя языки без проверок на null (например, C#, Java). Отсутствие проверки этих значений, как правило, является основным источником ошибок; мы всегда рекомендуем включать strictNullChecks, если это целесообразно в кодовой базе.

strictNullChecks включен

При включении strictNullChecks, когда значение равно null или undefined, вам нужно будет проверить эти значения, прежде чем использовать методы или свойства для этого значения. Точно так же, как проверка на undefined перед использованием необязательного свойства, мы можем использовать сужение для проверки значений, которые могут быть null:
function doSomething(x: string | null) {
  if (x === null) {
    // do nothing
  } else {
    console.log('Hello, ' + x.toUpperCase());
  }
}

Оператор ненулевого утверждения (Non-null Assertion Operator, постфикс !)

TypeScript также имеет специальный синтаксис для удаления null и undefined из типа без какой-либо явной проверки. Добавление ! после выражения фактически является утверждением того, что значение не является null или undefined:
function liveDangerously(x?: number | null) {
  // No error
  console.log(x!.toFixed());
}
Как и другие утверждения типа, это не меняет поведение вашего кода во время выполнения, поэтому важно использовать только ! когда вы знаете, что значение не может быть null или undefined.

Перечисления (Enums)

Перечисления — это функциональность, добавленная TypeScript, которая позволяет описывать значение, которое может быть одной из множества возможных именованных констант. В отличие от большинства возможностей TypeScript, это не дополнение к JavaScript на уровне типов, а нечто, добавленное к языку и среде выполнения.

Менее распространенные примитивы

Стоит упомянуть остальные примитивы в JavaScript, представленные в системе типов.

bigint

Начиная с ES2020, в JavaScript есть примитив, используемый для очень больших целых чисел, BigInt:
// Создание значения bigint через функцию BigInt
const oneHundred: bigint = BigInt(100);

// Создание значения BigInt через литеральный синтаксис
const anotherHundred: bigint = 100n;

symbol

В JavaScript есть примитив, используемый для создания глобальной уникальной ссылки с помощью функции Symbol():
const firstName = Symbol('name');
const secondName = Symbol('name');

if (firstName === secondName) {
  /// This condition will always return 'false' since the types 'typeof firstName' and 'typeof secondName' have no overlap.
  // Can't ever happen
}